
Precision Tuning by Static Analysis

Dorra Ben khalifa1 and Matthieu Martel1

1 University of Perpignan, LAMPS Laboratory, France
first.last@univ-perp.fr

Keywords: Numerical accuracy, computer arithmetic, compiler optimiza-
tion, static analysis

As more and more critical decisions and tasks relying on complex compu-
tations are delegated to machines, the needs for design methods as well as
verification and validation techniques strongly increase, to ensure that the
numbers given by the computers may be trusted. While most of existing
work concerns verification and validation techniques, assisted design method
are strongly desired since it is extremely difficult to understand the reasons
why the implementation of a formula is numerically inaccurate and how to
improve it. This is because the floating-point arithmetic is particularly not
intuitive. The values have a finite number of digits and algebraic laws like
associativity or commutativity do not hold. It is then necessary to provide
tools to the programmers, to help them to validate and increase the numeri-
cal quality of their codes and, broadly, to develop more quickly more reliable
numerical codes.

Recently, program transformation techniques [2] have been developed to
improve the accuracy of numerical codes [2, 5] as well as precision tuning tools
[6, 3, 1, 4]. In the present work, we focus on the latter subject. Precision
tuning consists of determining the minimal formats of the numbers used in a
program in order to ensure some accuracy specified by the user on the results
of the computation. This allows compilers to select the most appropriate
formats (for example IEEE754 half, single, double or quad formats) for each
variable. It is then possible to save memory, reduce CPU usage and use
less bandwidth for communications whenever distributed applications are
concerned. Our technique for precision tuning is also easily generalizable
to the fixed-point arithmetic for which it is important to determine data
formats, for example in FPGAs.

Our approach to precision tuning combines a forward and a backward
static analysis, done by abstract interpretation. The forward analysis prop-
agates safely the errors on the inputs and on the results of the intermediary
operations in order to determine the accuracy of the results. Next, based
on the results of the forward analysis and on assertions indicating which ac-
curacy the user wants for the outputs at some control points, the backward



analysis computes the minimal precision needed for the inputs and interme-
diary results in order to satisfy the assertions.

We express the forward and backward transfer functions as a set of con-
straints made of propositional logic formulas and relations between affine
expressions over integers (and only integers, even if the analyzed program
contains non-linear computations.) As a consequence, these constraints can
be easily checked by a SMT solver (we use Z3 in practice). The advantage
of the solver appears in the backward analysis, when one wants to deter-
mine the precision of the operands of some binary operation x ∗ y with
∗ ∈ {+,−,×,÷}, in order to obtain a certain accuracy on the result. In
general, it is possible to use a more precise x with a less precise y or, con-
versely, to use a more precise y with a less precise x. Because this choice
arises at almost any operation, there is a huge number of combinations on
the admissible formats of all the data in order to ensure a given accuracy
on the results. Instead of using an ad-hoc heuristic, we encode our problem
as a set of constraints and we let a well-known, optimized solver generate a
solution.

References

[1] W.-F. Chiang, M. Baranowski, I. Briggs, A. Solovyev, G.
Gopalakrishnan, and Z. Rakamaric, Rigorous floating-point mixed-
precision tuning, In POPL, pages 300–315. ACM, 2017.

[2] N. Damouche, M. Martel, and A. Chapoutot, Improving the
numerical accuracy of programs by automatic transformation, STTT,
19(4):427–448, 2017.

[3] E. Darulova and V. Kuncak, Sound compilation of reals, In POPL
’14 , pages 235–248. ACM, 2014.

[4] M. Martel, Floating-point format inference in mixed-precision, In
NFM, volume 10227 of LNCS, pages 230–246, 2017.

[5] P. Panchekha, A. Sanchez-Stern, J. R. Wilcox, and Z. Tat-
lock, Automatically improving accuracy for floating point expressions,
In PLDI, pages 1–11. ACM, 2015.

[6] C. Rubio-Gonzalez, C. Nguyen, H. D. Nguyen, J. Demmel, W.
Kahan, K. Sen, D. H. Bailey, C. Iancu, and D. Hough, Precimo-
nious: tuning assistant for floating-point precision, In HPCNSA, pages
27:1–27:12. ACM, 2013.


