University of Perpignan Via Domitia LAMPS Laboratory

Fast and Efficient Bit-Level Precision Tuning

Ph.D. Defense

Dorra BEN KHALIFA

Jury Members

Directors: Matthieu MARTEL Assalé ADJE Reviewers: Ganesh GOPALAKRISHNAN Examiners: Eva DARULOVA Eric GOUBAULT Philippe LANGLOIS David MONNIAUX Laura TITOLO

> UNIVERSITE PERPIGNAN VIA DOMITIA

November 29, 2021

Introduction

- SW used to solve more & more complex tasks
- Thanks to HW whose performace double every 18 months → Moore's law in 1965

¹Photo credits from https://royalsocietypublishing.org/doi/10.1098/rsta.2019.0061

Introduction

- SW used to solve more & more complex tasks
- Thanks to HW whose performace double every 18 months → Moore's law in 1965

Issue

- Less perspectives to further performance improvements after 2025
- End of Moore's law

Dorra BEN KHALIFA

Fast and Efficient Bit-Level Precision Tuning

¹Photo credits from https://royalsocietypublishing.org/doi/10.1098/rsta.2019.0061

Introduction

- SW used to solve more & more complex tasks
- Thanks to HW whose performace double every 18 months → Moore's law in 1965

Issue

- Less perspectives to further performance improvements after 2025
- 📧 End of Moore's law

What is the future of computing?

¹Photo credits from https://royalsocietypublishing.org/doi/10.1098/rsta.2019.0061

Dorra BEN KHALIFA

Fast and Efficient Bit-Level Precision Tuning

 Developers use highest precision available (e.g. 64 bits, 128 bits)→ increases running time, memory footprint, energy consumption

 Developers use highest precision available (e.g. 64 bits, 128 bits)→ increases running time, memory footprint, energy consumption

• Sometimes variables in lower precision (e.g. 16 bits, 32 bits) is enough

 Developers use highest precision available (e.g. 64 bits, 128 bits)→ increases running time, memory footprint, energy consumption

- Sometimes variables in lower precision (e.g. 16 bits, 32 bits) is enough
- Manually changing for optimized precision is fastidious

 Developers use highest precision available (e.g. 64 bits, 128 bits)→ increases running time, memory footprint, energy consumption

- Sometimes variables in lower precision (e.g. 16 bits, 32 bits) is enough
- Manually changing for optimized precision is fastidious
- Precision Tuning technique
 - Not a Find-and-Replace button like in a text editor
 - More complex task with program semantics analysis

 Developers use highest precision available (e.g. 64 bits, 128 bits)→ increases running time, memory footprint, energy consumption

- Sometimes variables in lower precision (e.g. 16 bits, 32 bits) is enough
- Manually changing for optimized precision is fastidious
- Precision Tuning technique
 - Not a Find-and-Replace button like in a text editor
 - More complex task with program semantics analysis

Goal

- Develop automated techniques for precision tuning
- Best trade-offs between performance & user requirements

Precision Tuning A Survey²

Static tools Dynamic tools

Weaknesses:

- Trial-and-Error strategy
- Search algorithm-based tools (CRAFT, PRECIMONIOUS, ...)
- Static tools limited to straight-line programs (Daisy, FPTUNER, ...) or uniform precision (Rosa,...)

How to go beyond?

²A more exhaustive survey is given in Chapter 3 of the dissertation

Precision Tuning A Survey²

Static tools Dynamic tools

POP strengths:

- ✓ No trial-and-Error strategy
- Finds directly the minimal number of bits needed
- Complexity does not increase as number of data types increases
- ✓ Loops and conditionals

²A more exhaustive survey is given in Chapter 3 of the dissertation

POP in One Slide

- Open-source tool
- Implementation in Java
- \approx 10 000 lines of code
- ANTLR, Z3, GLPK libraries
- Bit-level, IEEE754, fixed and MPFR datatypes
- Publications [FTSCS'19, IINTEC'19, IoTalS'20, ICICT'21, ICCSA'21, SAS'21]

Running Example From Parsing...

Pendulum ($\theta = \frac{\pi}{4}$)

Second order differential equation

(E1):
$$m \cdot l \cdot \frac{d^2\theta}{dt^2} = -m \cdot g \cdot \sin \theta$$

(E1) \Leftrightarrow (E2): $\frac{dy_1}{dt} = y_2$ and $\frac{dy_2}{dt} = -\frac{g}{l} \cdot \sin y_1$

Running Example From Parsing...

Pendulum ($\theta = \frac{\pi}{4}$)

Second order differential equation

(E1):
$$m \cdot l \cdot \frac{d^2\theta}{dt^2} = -m \cdot g \cdot \sin \theta$$

(E1)
$$\Leftrightarrow$$
(E2): $\frac{dy_1}{dt} = y_2$ and $\frac{dy_2}{dt} = -\frac{g}{l} \cdot \sin y_1$

 $q^{\ell_1} = 9.81^{\ell_0}; |^{\ell_3} = 0.5^{\ell_2};$ $v1^{\ell_5} = 0.785398^{\ell_4}$: $y2^{\ell_7} = 0.785398^{\ell_6};$ 3 $h^{\ell_9} = 0.1^{\ell_8}; t^{\ell_{11}} = 0.0^{\ell_{10}};$ 4 while $(t^{\ell_{13}} < {}^{\ell_{15}} 10.0^{\ell_{14}})^{\ell_{59}}$ 5 $y1new^{\ell}24 = y1^{\ell}17 + {}^{\ell}23 y2^{\ell}19 * {}^{\ell}22 h^{\ell}21;$ 6 $aux1^{\ell_{28}} = sin(y1^{\ell_{26}})^{\ell_{27}};$ $aux2^{\ell}40 = aux1^{\ell}30 *^{\ell}39 h^{\ell}32$ $\star^{\ell}38 \ q^{\ell}34 \ /^{\ell}37 \ |^{\ell}36$; 9 $y2new^{\ell}46 = y2^{\ell}42 - {}^{\ell}45 aux2^{\ell}44;$ 10 $t^{\ell}52 = t^{\ell}48 + t^{\ell}51 h^{\ell}50$; 11 $y1^{\ell_{55}} = y1 \text{new}^{\ell_{54}};$ 12 $y2^{\ell_{58}} = y2new^{\ell_{57}}; \};$ 13 require $nsb(v2, 20)^{\ell}61$: 14

POP Label File

Running Example ... to Tuning

Second order differential equation

(E1):
$$m \cdot l \cdot \frac{d^2\theta}{dt^2} = -m \cdot g \cdot \sin \theta$$

(E1) \Leftrightarrow (E2): $\frac{dy_1}{dt} = y_2$ and $\frac{dy_2}{dt} = -\frac{g}{l} \cdot \sin y$

Running Example ... to Tuning

Pendulum ($\theta = \frac{\pi}{4}$)

Second order differential equation

(E1):
$$m \cdot l \cdot \frac{d^2\theta}{dt^2} = -m \cdot g \cdot \sin \theta$$

(E1)
$$\Leftrightarrow$$
(E2): $\frac{dy_1}{dt} = y_2$ and $\frac{dy_2}{dt} = -\frac{g}{l} \cdot \sin y$

```
g|20| = 9.81|20|; ||20| = 1.5|20|;
    v1|29| = 0.785398|29|:
 3
    y_2|21| = 0.0|21|;
 4
    h|21| = 0.1|21|; t|21| = 0.0|21|;
5
    while (t < 1.0)
6
      y1new|20| = y1|21| +|20| y2|21|*|22| h|21|;
 7
      aux1|20| = sin(y1|29|)|20|;
8
      aux2|20| = aux1|19| *|20| h|18|*|19|g|17| /
             |18||17|;
9
      y2new 20 = y2 21 - 20 aux2 18;
10
      t|20| = t|21| + |20| h|17|:
11
      y1|20| = y1new|20|;
12
      y_{2}|20| = y_{2}|20|;
13
    }:
14
    require_nsb(y2, 20);
```

POP Output File

1 Preliminary Elements

Constraint Generation

- 3 Code Generation

Conclusion and Perspectives

• The unit in the first place of a real number x

$$ufp(x) = \begin{cases} \min\{i \in \mathbb{Z} : 2^{i+1} > |x|\} = \lfloor \log_2(|x|) \rfloor & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

• The unit in the first place of a real number x

$$\mathsf{ufp}(x) = \begin{cases} \min\{i \in \mathbb{Z} : 2^{i+1} > |x|\} = \lfloor \log_2(|x|) \rfloor & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

- The number of significant bits nsb of x
 - \hat{x} : approximation of x in finite precision
 - Absolute error: $\varepsilon_x \leq 2^{\operatorname{ufp}(x) \operatorname{nsb}(x) + 1}$

• The unit in the first place of a real number x

$$\mathsf{ufp}(x) = \begin{cases} \min\{i \in \mathbb{Z} : 2^{i+1} > |x|\} = \lfloor \log_2(|x|) \rfloor & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

- The number of significant bits nsb of x
 - \hat{x} : approximation of x in finite precision
 - Absolute error: $\varepsilon_x < 2^{ufp(x) nsb(x) + 1}$
- The unit in the last place of x

ulp(x) = ufp(x) - nsb(x) + 1

• The unit in the first place of a real number x

$$\mathsf{ufp}(x) = \begin{cases} \min\{i \in \mathbb{Z} : 2^{i+1} > |x|\} = \lfloor \log_2(|x|) \rfloor & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

- The number of significant bits nsb of x
 - \hat{x} : approximation of x in finite precision
 - Absolute error: $\varepsilon_x \leq 2^{ufp(x)-nsb(x)+1}$
- The unit in the last place of x

$$ulp(x) = ufp(x) - nsb(x) + 1$$

- ufp(2.75) = 1
- nsb(2.75) = 4
- ulp(2.75) = −2

1 [...]
2
$$z^{\ell_2} = x^{\ell_0} + y^{\ell_1};$$

3 require_nsb(z,18) ^{ℓ_3} ;

• Preliminary range analysis for all the program variables

example $x \in [0.2, 0.7], y \in [0.6, 0.8], z \in [0.8, 1.5]$

1 [...] 2 $z^{\ell_2} = x^{\ell_0} + y^{\ell_1};$ 3 require_nsb(z,18)^{ℓ_3};

• Preliminary range analysis for all the program variables

example $x \in [0.2, 0.7], y \in [0.6, 0.8], z \in [0.8, 1.5]$

• Pre-computation of the ufp of each range

example
$$ufp(0.2) = -3$$
, $ufp(0.7) = -1 \implies ufp(x) = -1$, $ufp(y) = -1$, $ufp(z) = 0$

1 [...] 2 $z^{\ell_2} = x^{\ell_0} + y^{\ell_1};$ 3 require_nsb(z,18)^{ℓ_3};

• Preliminary range analysis for all the program variables

example $x \in [0.2, 0.7], y \in [0.6, 0.8], z \in [0.8, 1.5]$

• Pre-computation of the ufp of each range

example ufp(0.2) = -3, $ufp(0.7) = -1 \implies ufp(x) = -1$, ufp(y) = -1, ufp(z) = 0

- Goal: Computation of the minimal nsb
 - nsb(z) = 18 // thanks to the annotation
 - $nsb(x) = ufp(x) ufp(\varepsilon(x))$
 - nsb(x) = −1 ufp(ε(x)) ?

How to compute errors?

Preliminary Elements Computation Errors

Case 1: Initially values x and y are exact

• Truncation error: $\varepsilon_+ \leq 2^{\operatorname{ufp}(z) - \operatorname{prec}(+)}$

Preliminary Elements Computation Errors

Case 1: Initially values x and y are exact

• Truncation error:
$$\varepsilon_+ \leq 2^{\operatorname{ufp}(z) - \operatorname{prec}(+)}$$

Case 2: Values x and y coming from former computations have errors

> Before this work, very costly over-approximation in [NFM'17]

✗ Before this work, very costly over-approximation in [NFM'17]

 $\checkmark~$ Optimized carry bit function

Optimized Carry Bit

Let
$$x^{\ell} = c_1^{\ell_1} \odot c_2^{\ell_2}, \ell \in Lab$$
 and $\odot \in \{+, -, \times, \div\}$
 $carry(\ell, \ell_1, \ell_2) = \begin{cases} 0 & \text{if no overlap errors} \\ 1 & \text{otherwise.} \end{cases}$

X Before this work, very costly over-approximation in [NFM'17]

 $\checkmark~$ Optimized carry bit function

Preliminary Elements Transfer Functions

³Chapter 4 of the dissertation discusses the arithmetic expressions

Preliminary Elements Transfer Functions

³Chapter 4 of the dissertation discusses the arithmetic expressions

Dorra BEN KHALIFA

Fast and Efficient Bit-Level Precision Tuning

Preliminary Elements Transfer Functions

- Same for the multiplication, subtraction and division³
- Semantic of the commands in the dissertation
- Technique generalizable to sets of values

³Chapter 4 of the dissertation discusses the arithmetic expressions

Preliminary Elements

2 Constraint Generation

- 3 Code Generation

Conclusion and Perspectives

Constraints Generation by POP

• Approach: static analysis of the error propagation

- Approach: static analysis of the error propagation
- Formulation: three systems of constraints

- Approach: static analysis of the error propagation
- Formulation: three systems of constraints
 - 1. SMT-Based Method checked by SMT solver
 - POP(SMT) version [FTSCS'19, IINTEC'19, IoTalS'20, ICICT'21]

- Approach: static analysis of the error propagation
- Formulation: three systems of constraints
 - 1. SMT-Based Method checked by SMT solver
 - POP(SMT) version [FTSCS'19, IINTEC'19, IoTalS'20, ICICT'21]
 - 2. ILP-Based Method solved by LP solver
 - Pessimistic carry bit
 - POP(ILP) version [ICCSA'21, SAS'21]

- Approach: static analysis of the error propagation
- Formulation: three systems of constraints
 - 1. SMT-Based Method checked by SMT solver
 - POP(SMT) version [FTSCS'19, IINTEC'19, IoTalS'20, ICICT'21]
 - 2. ILP-Based Method solved by LP solver
 - Pessimistic carry bit
 - POP(ILP) version [ICCSA'21, SAS'21]
 - 3. PI-Based Method solved with policy iteration algorithm
 - Optimized carry bit
 - POP(ILP) version [ICCSA'21, SAS'21]

- Approach: static analysis of the error propagation
- Formulation: three systems of constraints
 - 1. SMT-Based Method checked by SMT solver
 - POP(SMT) version [FTSCS'19, IINTEC'19, IoTalS'20, ICICT'21]
 - 2. ILP-Based Method solved by LP solver
 - Pessimistic carry bit
 - POP(ILP) version [ICCSA'21, SAS'21]
 - 3. PI-Based Method solved with policy iteration algorithm
 - Optimized carry bit
 - POP(ILP) version [ICCSA'21, SAS'21]
- Output: precision at bit-level translatable to IEEE754, fixed arithmetic, ...

Preliminary Elements

2 Constraint Generation

- SMT-Based Method
- 3 C<u>ode Generati</u>

Conclusion and Perspectives

• First introduced in [NFM'17], improvement of carries in [FTSCS'19]

- First introduced in [NFM'17], improvement of carries in [FTSCS'19]
- SMT-Based Method^{ab} = forward analysis + backward analysis

- First introduced in [NFM'17], improvement of carries in [FTSCS'19]
- SMT-Based Method^{ab} = forward analysis + backward analysis
- Assign three parameters to each variable: nsb_F, nsb_B and nsb

- First introduced in [NFM'17], improvement of carries in [FTSCS'19]
- SMT-Based Method^{ab} = forward analysis + backward analysis
- Assign three parameters to each variable: nsb_F, nsb_B and nsb
- Constraints of first order predicates and with linear integer relations only

- First introduced in [NFM'17], improvement of carries in [FTSCS'19]
- SMT-Based Method^{ab} = forward analysis + backward analysis
- Assign three parameters to each variable: nsb_F, nsb_B and nsb
- Constraints of first order predicates and with linear integer relations only
- Easy to solve for an SMT solver (Z3)

^aM. Martel. "Floating-Point Format Inference in Mixed-Precision". NFM'17

^bD. Ben Khalifa, M. Martel and A. Adjé. "POP: A Tuning Assistant for Mixed-Precision Floating-Point Computations". FTSCS'19

Recall that for the forward addition we have

 ε(z) = ε(x) + ε(y) + ε_+

- Recall that for the forward addition we have

 ε(z) = ε(x) + ε(y) + ε_+
- First over-approximation

$$\varepsilon(z) \leq 2^{\mathsf{ufp}(z) - \mathsf{nsb}_F(z) + 1} + 2^{\mathsf{ufp}(y) - \mathsf{nsb}_F(y) + 1} + 2^{\mathsf{ufp}(z) - \mathsf{prec}(+)}$$

- Recall that for the forward addition we have

 ε(z) = ε(x) + ε(y) + ε_+
- First over-approximation

$$\varepsilon(z) \leq 2^{\mathsf{ufp}(z) - \mathsf{nsb}_F(z) + 1} + 2^{\mathsf{ufp}(y) - \mathsf{nsb}_F(y) + 1} + 2^{\mathsf{ufp}(z) - \mathsf{prec}(+)}$$

Second over-approximation

$$\varepsilon(z) \leq 2^{\max(ufp(x) - nsb_F(x), ufp(y) - nsb_F(y), ufp(z) - prec(+)) + carry(z, x, y)}$$

- Recall that for the forward addition we have

 ε(z) = ε(x) + ε(y) + ε_+
- First over-approximation

$$\varepsilon(z) \leq 2^{\mathsf{ufp}(z) - \mathsf{nsb}_F(z) + 1} + 2^{\mathsf{ufp}(y) - \mathsf{nsb}_F(y) + 1} + 2^{\mathsf{ufp}(z) - \mathsf{prec}(+)}$$

Second over-approximation

$$\varepsilon(z) \leq 2^{\max(ufp(x) - nsb_F(x), ufp(y) - nsb_F(y), ufp(z) - prec(+)) + carry(z, x, y)}$$

• Forward addition $\overrightarrow{\oplus}$

 $\mathsf{nsb}_F(z) \ge \mathsf{ufp}(x+y) - \mathsf{max}(\mathsf{ufp}(x) - \mathsf{nsb}_F(x), \mathsf{ufp}(y) - \mathsf{nsb}_F(y), \mathsf{ufp}(z) - \mathsf{prec}(+))$

-carry(z, x, y)

- Recall that for the forward addition we have

 ε(z) = ε(x) + ε(y) + ε_+
- First over-approximation

$$\varepsilon(z) \leq 2^{\mathsf{ufp}(z) - \mathsf{nsb}_F(z) + 1} + 2^{\mathsf{ufp}(y) - \mathsf{nsb}_F(y) + 1} + 2^{\mathsf{ufp}(z) - \mathsf{prec}(+)}$$

Second over-approximation

$$\varepsilon(z) \leq 2^{\max(ufp(x) - nsb_F(x), ufp(y) - nsb_F(y), ufp(z) - prec(+)) + carry(z, x, y)}$$

• Forward addition $\overrightarrow{\oplus}$

 $\mathsf{nsb}_{\mathcal{F}}(z) \ge \mathsf{ufp}(x+y) - \mathsf{max}(\mathsf{ufp}(x) - \mathsf{nsb}_{\mathcal{F}}(x), \mathsf{ufp}(y) - \mathsf{nsb}_{\mathcal{F}}(y), \mathsf{ufp}(z) - \mathsf{prec}(+))$

-carry(z, x, y)

• Backward addition $\overleftarrow{\oplus}$

$$nsb_B(x) \le ufp(z - y) - ufp(z) + nsb(z)$$

- Recall that for the forward addition we have

 ε(z) = ε(x) + ε(y) + ε_+
- First over-approximation

$$\varepsilon(z) \leq 2^{\mathsf{ufp}(z) - \mathsf{nsb}_F(z) + 1} + 2^{\mathsf{ufp}(y) - \mathsf{nsb}_F(y) + 1} + 2^{\mathsf{ufp}(z) - \mathsf{prec}(+)}$$

Second over-approximation

$$\varepsilon(z) \leq 2^{\max(ufp(x) - nsb_F(x), ufp(y) - nsb_F(y), ufp(z) - prec(+)) + carry(z, x, y)}$$

• Forward addition $\overrightarrow{\oplus}$

 $\mathsf{nsb}_{\mathcal{F}}(z) \ge \mathsf{ufp}(x+y) - \mathsf{max}(\mathsf{ufp}(x) - \mathsf{nsb}_{\mathcal{F}}(x), \mathsf{ufp}(y) - \mathsf{nsb}_{\mathcal{F}}(y), \mathsf{ufp}(z) - \mathsf{prec}(+))$

-carry(z, x, y)

• Backward addition $\overleftarrow{\oplus}$

$$nsb_B(x) \le ufp(z - y) - ufp(z) + nsb(z)$$

Final precision

 $0 \leq \operatorname{nsb}_B(x) \leq \operatorname{nsb}(x) \leq \operatorname{nsb}_F(x)$

Dorra BEN KHALIFA

Fast and Efficient Bit-Level Precision Tuning

Elementary functions (sin, cos, tan, arcsin, log, . . .)

• Loss of precision of φ bits, where $\varphi \in \mathbb{N}$ a parameter of the analysis

example $x = 3.0, \varphi = 9$ and require_nsb(sin(x), 26) $\implies \overrightarrow{sin}(x) = sin(3.0|35|)|26|$

Dorra BEN KHALIFA

⁴Discussed in Chapter 5 of the dissertation

Elementary functions (sin, cos, tan, arcsin, log, ...)

• Loss of precision of φ bits, where $\varphi \in \mathbb{N}$ a parameter of the analysis

example $x = 3.0, \varphi = 9$ and require_nsb(sin(x), 26) $\implies \overrightarrow{sin}(x) = sin(3.0|35|)|26|$

Loops

- Managed correctly thanks to range analysis
- Relate nsb at the end of the body to nsb of the same variables and the beginning of the loop

Dorra BEN KHALIFA

⁴Discussed in Chapter 5 of the dissertation

Elementary functions (sin, cos, tan, arcsin, log, ...)

• Loss of precision of φ bits, where $\varphi \in \mathbb{N}$ a parameter of the analysis

example $x = 3.0, \varphi = 9$ and require_nsb(sin(x), 26) $\implies \overrightarrow{sin}(x) = sin(3.0|35|)|26|$

Loops

- Managed correctly thanks to range analysis
- Relate nsb at the end of the body to nsb of the same variables and the beginning of the loop

Conditionals

- Analyze both then and else branches of the if statement without reducing the ranges of the variables
- X Do not take care of the guards yet

⁴Discussed in Chapter 5 of the dissertation

```
a^{\ell}1 = 9.81^{\ell}0; |^{\ell}3 = 0.5^{\ell}2;
 1
 2 v1^{\ell_5} = 0.785398^{\ell_4}:
 3 v2^{\ell_7} = 0.785398^{\ell_6}:
       h^{\ell 9} = 0.1^{\ell 8}; t^{\ell 11} = 0.0^{\ell 10};
 4
        while (t^{\ell}13 < \ell_{15} 10.0^{\ell}14)^{\ell_{59}}
 5
         v1new^{\ell}24 = v1^{\ell}17 + \ell^{2}3 v2^{\ell}19 * \ell^{2}22 h^{\ell}21
 6
          aux1^{\ell}28 = sin(v1^{\ell}26)^{\ell}27;
 7
          aux^{\ell}40 = aux^{\ell}30 *^{\ell}39 h^{\ell}32
 8
         *^{\ell}38 q^{\ell}34 /^{\ell}37 |^{\ell}36;
 9
          v2new^{\ell}46 = v2^{\ell}42 - {}^{\ell}45 aux2^{\ell}44
10
         t^{\ell}52 = t^{\ell}48 + t^{\ell}51 h^{\ell}50
11
         v1^{\ell}55 = v1 \text{new}^{\ell}54:
12
         y2^{\ell}58 = y2new^{\ell}57; };
13
          require nsb(v2, 20)^{\ell}61:
14
```

POP Label File

⁵D. Ben Khalifa, M. Martel and A. Adjé. "POP: A Tuning Assistant for Mixed-Precision Floating-Point Computations". FTSCS'19

Dorra BEN KHALIFA

Running Example SMT Constraints⁵

```
a^{\ell}1 = 9.81^{\ell}0; |^{\ell}3 = 0.5^{\ell}2;
 2 v1^{\ell_5} = 0.785398^{\ell_4}:
 3 v2^{\ell_7} = 0.785398^{\ell_6}:
       h^{\ell}9 = 0.1^{\ell}8 \cdot t^{\ell}11 = 0.0^{\ell}10 \cdot
 4
        while (t^{\ell}13 < \ell^{15} 10.0^{\ell}14)^{\ell}59 
 5
          v1new^{\ell}24 = v1^{\ell}17 + {}^{\ell}23 v2^{\ell}19 * {}^{\ell}22 h^{\ell}21
 6
          aux1^{\ell}28 = sin(v1^{\ell}26)^{\ell}27;
 7
          aux^{\ell}40 = aux^{\ell}30 *^{\ell}39 h^{\ell}32
 8
                                                                       C_{73} =
         *^{\ell}38 \ a^{\ell}34 \ /^{\ell}37 \ |^{\ell}36;
 9
          v2new^{\ell}46 = v2^{\ell}42 - {}^{\ell}45 aux2^{\ell}44:
10
          t^{\ell}52 = t^{\ell}48 + t^{\ell}51 h^{\ell}50
11
          v1^{\ell}55 = v1new^{\ell}54;
12
         y2^{\ell}58 = y2new^{\ell}57; };
13
          require nsb(v2, 20)^{\ell}61:
14
             POP Label File
```

```
/ASSIGN
(assert( <= nsb(\ell_{24}) nsb_F(\ell_{24})))
(assert( <= nsb_F(\ell_{56}) nsb_F(\ell_{24})))
(assert( <= nsb_B(\ell_{24}) nsb_B(\ell_{19})))
(assert(>= nsb_B(\ell_{24}) nsb_B(\ell_{13})))
(assert(= nsb_B(\ell_{56}) nsb_B(\ell_{24})))
//ADDITION
(assert( <= nsb(\ell_{17}) nsb_F(\ell_{17})))
(assert( <= nsb_F(\ell_{17}) nsb_F(\ell_5)))
//MULTIPLICATION
(assert(or(and(<= nsb(\ell_{17}) nsb_F(\ell_{17})))) = nsb(\ell_{22}))
 nsb_B(\ell_{22}))(and(<=nsb(\ell_{22})))
nsb_{F}(\ell_{22}))(>= nsb(\ell_{17}) nsb_{B}(\ell_{17}))))
//CARRY BIT
 (assert(= carry(\ell_{23}, \ell_{17}, \ell_{22})(ite(> (ite(> ulp_e(\ell_0)(-0.56)) 0.1)))))
 (ite(> ulp_e(\ell_0) (-0.52)) 0.1))(ite(> ulp_e(\ell_0)(-0.56))0.1)
 (ite(> ulp_e(\ell_0)(-0 52))0 1))))
```

Linear number of constraints / variables in the size of the analyzed program

⁵D. Ben Khalifa, M. Martel and A. Adjé. "POP: A Tuning Assistant for Mixed-Precision Floating-Point Computations". FTSCS'19

Dorra BEN KHALIFA

```
g|20| = 9.81|20|; 1|20| = 1.5|20|;
 1
2
          y1|29| = 0.785398|29|;
3
          y_2|21| = 0.0|21|;
          h|21| = 0.1|21|; t|21| = 0.0|21|;
4
          while (t < 1.0) {
            y1new|20| = y1|21| +|20| y2|21|*|22| h|21|;
6
7
            aux1|20| = sin(y1|29|)|20|;
8
            aux2|20| = aux1|19| *|20| h|18|*|19|g|17| /|18|1|17|;
9
            y2new|20| = y2|21| - |20| aux2|18|;
10
            t|20| = t|21| + |20| h|17|;
11
            y1|20| = y1new|20|;
12
            y_{2}|20| = y_{2}|20|;
13
          }:
14
          require_nsb(y2, 20);
```

File POP_output_Z3

File POP_output_Z3

Tool	#Bits	#Var Solver	#Cstr Solver	Time (s)
POP(SMT)	960	314	431	13.1

File POP_output_Z3

Tool	#Bits	#Var Solver	#Cstr Solver	Time (s)
POP(SMT)	960	314	431	13.1

Cons

- **X** Too complex system of constraints
- X Non-optimizing solver coupled with binary search
- X Is the forward analysis really useful?

ö

Preliminary Elements

2 Constraint Generation

ILP-Based Method

B Code Generation

Conclusion and Perspectives

Relaxation of the SMT-based method → backward analysis only

- Relaxation of the SMT-based method \implies backward analysis only
- Generate an ILP from the program source code

- Relaxation of the SMT-based method \implies backward analysis only
- Generate an ILP from the program source code
- Over-approximated carry bit function carry = 1

- Relaxation of the SMT-based method \implies backward analysis only
- Generate an ILP from the program source code
- Over-approximated carry bit function ⇒ carry = 1
- Former constraints used to generate an ILP

- Relaxation of the SMT-based method \implies backward analysis only
- Generate an ILP from the program source code
- Former constraints used to generate an ILP

Case of Addition

Since

$$nsb(z) \le ufp(z) - max (ufp(x) - nsb(x), ufp(y) - nsb(y)) - carry(z, y, x)$$

- Relaxation of the SMT-based method \implies backward analysis only
- Generate an ILP from the program source code
- Former constraints used to generate an ILP

Case of Addition

Since

$$\mathsf{nsb}(z) \le \mathsf{ufp}(z) - \mathsf{max}\left(\mathsf{ufp}(x) - \mathsf{nsb}(x), \mathsf{ufp}(y) - \mathsf{nsb}(y)\right) - carry(z, y, x)$$

Image we generate an ILP (with relaxation)

$$(S) = \begin{cases} \operatorname{nsb}(x) \ge \operatorname{nsb}(z) + \operatorname{ufp}(x) - \operatorname{ufp}(z) + 1\\ \operatorname{nsb}(y) \ge \operatorname{nsb}(z) + \operatorname{ufp}(y) - \operatorname{ufp}(z) + 1 \end{cases}$$

```
1 g^{\ell_1} = 9.81^{\ell_0}; 1^{\ell_3} = 0.5^{\ell_2};

2 y1^{\ell_5} = 0.785398^{\ell_3};

3 y2^{\ell_7} = 0.785398^{\ell_6};

4 h^{\ell_9} = 0.1^{\ell_8}; t^{\ell_{11}} = 0.0^{\ell_{10}};

5 while (t^{\ell_{13}} < t^{\ell_{15}} = 10.0^{\ell_{14}})^{\ell_{59}} (

6 y1new^{\ell_{24}} = y1^{\ell_{17}} + t^{\ell_{23}} y2^{\ell_{19}} * t^{\ell_{22}} h^{\ell_{21}};

7 aux1^{\ell_{28}} = sin(y1^{\ell_{26}})^{\ell_{27}};

8 aux2^{\ell_{40}} = aux1^{\ell_{50}} * t^{\ell_{58}};

10 y2new^{\ell_{46}} = y2^{\ell_{42}} - t^{\ell_{45}} aux2^{\ell_{44}};

11 t^{\ell_{52}} = t^{\ell_{48}} + t^{\ell_{51}} h^{\ell_{50}};

12 y1^{\ell_{55}} = y1new^{\ell_{54}};

13 y2^{\ell_{58}} = y2new^{\ell_{57}}; );

14 require_nsb(y2, 20)^{\ell_{61}};
```

POP Label File

⁷A. Adjé, D. Ben Khalifa and M. Martel. "Fast and Efficient Bit-Level Precision Tuning". SAS'21

Dorra BEN KHALIFA

⁶ILP nature of the problem presented in Chapter 5 Theorem 5.2

Running Example ILP Constraints⁷

```
1 g^{\ell} 1 = 9.81^{\ell}0; 1^{\ell}3 = 0.5^{\ell}2;
2 y1^{\ell}5 = 0.785398^{\ell}4;
3 y2^{\ell}7 = 0.785398^{\ell}6;
4 h^{\ell}9 = 0.1^{\ell}8; t^{\ell}11 = 0.0^{\ell}10;
5 while (t^{\ell}13 <^{\ell}15 10.0^{\ell}14)^{\ell}59 \{
6 y1new^{\ell}24 = y1^{\ell}17 + ^{\ell}23 y2^{\ell}19 * ^{\ell}22 h^{\ell}21;
7 aux^{\ell}28 = sin(y1^{\ell}26)^{\ell}27;
8 aux^{\ell}40 = aux^{\ell}30 * ^{\ell}39 h^{\ell}32
9 * ^{\ell}38 g^{\ell}34 / ^{\ell}37 1^{\ell}36;
10 y2new^{\ell}46 = y2^{\ell}42 - ^{\ell}45 aux^{\ell}44;
11 t^{\ell}52 = t^{\ell}48 * ^{\ell}51 h^{\ell}50;
12 y1^{\ell}55 = y1new^{\ell}54;
13 y2^{\ell}58 = y2new^{\ell}57;
14 require_nsb(y2, 20)^{\ell}61;
```

```
POP Label File
```

```
C_{GLPK} = \begin{cases} \begin{array}{l} \operatorname{nsb}(\ell_{17}) \ge \operatorname{nsb}(\ell_{23}) + (-1) + \operatorname{carry}(\ell_{23})(\ell_{17}, \ell_{22}) - (-1) //\operatorname{Add} \\ \operatorname{nsb}(\ell_{22}) \ge \operatorname{nsb}(\ell_{23}) + 0 + \operatorname{carry}(\ell_{23})(\ell_{17}, \ell_{22}) - (1) //\operatorname{Add} \\ \operatorname{nsb}(\ell_{19}) \ge \operatorname{nsb}(\ell_{22}) + \operatorname{carry}(\ell_{22})(\ell_{19}, \ell_{21}) - 1 //\operatorname{Mult} \\ \operatorname{nsb}(\ell_{21}) \ge \operatorname{nsb}(\ell_{22}) + \operatorname{carry}(\ell_{22})(\ell_{19}, \ell_{21}) - 1 //\operatorname{Mult} \\ \operatorname{nsb}(\ell_{23}) \ge \operatorname{nsb}(\ell_{24}) //\operatorname{Assign} \\ \\ \operatorname{carry}(\ell_{23}, \ell_{17}, \ell_{22}) = 1, \operatorname{carry}(\ell_{22}, \ell_{19}, \ell_{21}) = 1 //\operatorname{Carry} \operatorname{Bit} \end{cases}
```

⁶ILP nature of the problem presented in Chapter 5 Theorem 5.2

⁷A. Adjé, D. Ben Khalifa and M. Martel. "Fast and Efficient Bit-Level Precision Tuning". SAS'21

Dorra BEN KHALIFA

Running Example ILP Constraints⁷

```
1 g^{\ell} 1 = 9.81^{\ell}0; 1^{\ell}3 = 0.5^{\ell}2;
2 y1^{\ell}5 = 0.785398^{\ell}4;
3 y2^{\ell}7 = 0.785398^{\ell}6;
4 h^{\ell}9 = 0.1^{\ell}8; t^{\ell}11 = 0.0^{\ell}10;
5 \text{ while } (t^{\ell}13 \cdot t^{\ell}15 \cdot 10.0^{\ell}14)^{\ell}59 \{
6 \text{ y1new}^{\ell}24 = y1^{\ell}17 \cdot t^{\ell}23 y2^{\ell}19 \cdot t^{\ell}22 h^{\ell}21;
7 aux1^{\ell}28 = sin(y1^{\ell}26)^{\ell}27;
8 aux2^{\ell}40 = aux1^{\ell}30 \cdot t^{\ell}36;
10 \text{ y2new}^{\ell}46 = y2^{\ell}42 - t^{\ell}45 aux2^{\ell}44;
11 t^{\ell}52 = t^{\ell}48 \cdot t^{\ell}51 h^{\ell}50;
12 y1^{\ell}55 = y1new^{\ell}54;
13 y2^{\ell}58 = y2new^{\ell}57;
14 \text{ require_nsb}(y2, 20)^{\ell}61;
```

POP Label File

$$PK = \begin{cases} nsb(\ell_{23}) \ge nsb(\ell_{23}) + 0 + carry(\ell_{23})(\ell_1, \ell_{22}) = (1)/(ADD) \\ nsb(\ell_{19}) \ge nsb(\ell_{22}) + carry(\ell_{23})(\ell_1, \ell_{22}) = (1)/(ADD) \\ nsb(\ell_{19}) \ge nsb(\ell_{22}) + carry(\ell_{22})(\ell_{19}, \ell_{21}) - 1 //MULT \\ nsb(\ell_{23}) \ge nsb(\ell_{24}) //ASSIGN \\ carry(\ell_{23}, \ell_{17}, \ell_{22}) = 1, carry(\ell_{22}, \ell_{19}, \ell_{21}) = 1 //CARRY BIT \end{cases}$$

 $nsh(\ell_{1-}) > nsh(\ell_{2-}) + (-1) + carry(\ell_{2-})(\ell_{1-} - \ell_{2-}) - (-1) / (App)$

POP(ILP)⁶

CGI

- Linear number of constraints / variables in the size of the analyzed program
- Integer solution computed in polynomial time
- LP solver among reals

⁷A. Adjé, D. Ben Khalifa and M. Martel. "Fast and Efficient Bit-Level Precision Tuning". SAS'21

Dorra BEN KHALIFA

Fast and Efficient Bit-Level Precision Tuning

⁶ILP nature of the problem presented in Chapter 5 Theorem 5.2

```
1 |q|| 20| = 9.81 |20|; ||| 20| = 1.5 |20|;
2 y1|29| = 0.785398|29|;
3 y_2 |22| = 0.0 |22|;
4 h|22| = 0.1|22|; t|21| = 0.0|21|;
5 while (t < 1.0) {
6 y1new|20| = y1|21| + |20| y2|22| + |22| h|22|;
     aux1|20| = sin(y1|29|)|20|;
7
     aux2|20| = aux1|20| *|20| h|20|*|20| g|20|/|20|1|20|;
8
9
    y2new|20| = y2|21| - |20| aux2|18|;
10
    t|20| = t|21| + |20| h|17|;
11
    y1|20| = y1new|20|;
12
     v2|20| = v2new|20|:
13 }:
14 require_nsb(y2, 20);
```

File POP_output_GLPK

Tool	#Bits	#Var Solver	#Cstr Solver	Time (s)
POP(SMT)	960	314	431	13.1
POP(ILP)	861	52	69	3.5
```
1 |q| 20| = 9.81 |20|; ||20| = 1.5 |20|;
2 y1|29| = 0.785398|29|;
3 y^{2} |22| = 0.0 |22|;
4 h|22| = 0.1|22|; t|21| = 0.0|21|;
5 while (t < 1.0) {
6
    y1new|20| = y1|21| + |20| y2|22| + |22| h|22|;
     aux1|20| = sin(y1|29|)|20|;
     aux2|20| = aux1|20| *|20| h|20|*|20| g|20|/|20|1|20|;
8
9
    y2new|20| = y2|21| - |20| aux2|18|;
10
    t|20| = t|21| + |20| h|17|;
11
    y1|20| = y1new|20|;
12
     v2|20| = v2new|20|:
13 }:
14 require_nsb(y2, 20);
```

File POP_output_GLPK

Tool	#Bits	#Var Solver	#Cstr Solver	Time (s)
POP(SMT)	960	314	431	13.1
POP(ILP)	861	52	69	3.5

How to avoid the pessimistic carry bit?

Dorra BEN	KHALI	FA
-----------	-------	----

Preliminary Elements

2 Constraint Generation

PI-Based Method

3 Code Generation

Formulation 3 PI-Based Method

Policy iteration algorithm⁸ to solve min – max equations

⁸Algorithm 2 presented in Chapter 5 page 86

Formulation 3 PI-Based Method

- Policy iteration algorithm⁸ to solve min max equations
- Back to Line 6 of the pendulum example

$$carry(\ell, \ell_1, \ell_2) = \min \left(\begin{array}{c} \max \left(ufp(\ell_2) - ufp(\ell_1) + nsb(\ell_1) - nsb(\ell_2) - nsb_e(\ell_2), 0 \right), \\ \max \left(ufp(\ell_1) - ufp(\ell_2) + nsb(\ell_2) - nsb(\ell_1) - nsb_e(\ell_1), 0 \right), 1 \end{array} \right)$$

⁸Algorithm 2 presented in Chapter 5 page 86

- Policy iteration algorithm⁸ to solve min max equations
- Back to Line 6 of the pendulum example

$$\textit{carry}(\ell,\ell_1,\ell_2) = \min \left(\begin{array}{c} \max \left(\textit{ufp}(\ell_2) - \textit{ufp}(\ell_1) + \textit{nsb}(\ell_1) - \textit{nsb}(\ell_2) - \textit{nsb}_e(\ell_2), 0 \right), \\ \max \left(\textit{ufp}(\ell_1) - \textit{ufp}(\ell_2) + \textit{nsb}(\ell_2) - \textit{nsb}(\ell_1) - \textit{nsb}_e(\ell_1), 0 \right), 1 \end{array} \right)$$

Principle

- Choose a policy $\pi_0 \in \Pi$ by breaking the min operator
- Associate policy map f^{π_0} to π_0

example $f^{\pi_0} = \max \left(\mathsf{ufp}(\ell_2) - \mathsf{ufp}(\ell_1) + \mathsf{nsb}(\ell_1) - \mathsf{nsb}(\ell_2) - \mathsf{nsb}_{\mathsf{e}}(\ell_2), 0 \right)$

- Solve corresponding ILP problem
- If a more precise solution is found, PI algorithm iterates

⁸Algorithm 2 presented in Chapter 5 page 86

```
a^{\ell_1} = 9.81^{\ell_0}; |^{\ell_3} = 0.5^{\ell_2};
  1
 2 v1^{\ell_5} = 0.785398^{\ell_4}:
 3 v2^{\ell}7 = 0.785398^{\ell}6;
        h^{\ell}9 = 0.1^{\ell}8; t^{\ell}11 = 0.0^{\ell}10;
 Δ
         while (t^{\ell}13 < \ell_{15} 10.0^{\ell}14)^{\ell}59
  5
          v1new<sup>\ell</sup>24 = v1<sup>\ell</sup>17 +<sup>\ell</sup>23 v2<sup>\ell</sup>19 *<sup>\ell</sup>22 h<sup>\ell</sup>21:
 6
           aux1^{\ell}28 = sin(y1^{\ell}26)^{\ell}27;
           aux^{\ell}40 = aux^{\ell}30 *^{\ell}39 h^{\ell}32
 8
          *^{\ell}38 \ \alpha^{\ell}34 \ /^{\ell}37 \ |^{\ell}36
 9
          y2new^{\ell}46 = y2^{\ell}42 - {}^{\ell}45 aux2^{\ell}44;
10
           t^{\ell}52 = t^{\ell}48 + t^{\ell}51 h^{\ell}50
11
          v1^{\ell}55 = v1new^{\ell}54:
12
13
          y2^{\ell}58 = y2new^{\ell}57; \};
           require nsb(v2, 20)^{\ell}61:
14
```

POP Label File

⁹A. Adjé, D. Ben Khalifa and M. Martel. "Fast and Efficient Bit-Level Precision Tuning". SAS'21

Running Example PI Constraints⁹

```
1 a^{\ell_1} = 9.81^{\ell_0}; |^{\ell_3} = 0.5^{\ell_2};
 2 v1^{\ell_5} = 0.785398^{\ell_4}:
 3 v2^{\ell}7 = 0.785398^{\ell}6;
 Δ
  5
 6
 7
 8
         *^{\ell}38 \ \alpha^{\ell}34 \ /^{\ell}37 \ |^{\ell}36
 q
         y2new^{\ell}46 = y2^{\ell}42 - {}^{\ell}45 aux2^{\ell}44:
10
          t^{\ell}52 = t^{\ell}48 + t^{\ell}51 h^{\ell}50
11
         v1^{\ell}55 = v1new^{\ell}54:
12
13
         v2^{\ell}58 = v2new^{\ell}57; };
          require nsb(v2, 20)^{\ell}61:
14
```

POP Label File

```
nsb_{e}(\ell_{23}) \ge nsb_{e}(\ell_{17}), //ADD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              \begin{array}{l} \mathsf{nsb}_{e}(\ell_{23}) \geq \mathsf{nsb}_{e}(\ell_{22}), //\mathsf{Abb} \\ \mathsf{nsb}_{e}(\ell_{23}) \geq -1 - 0 + \mathsf{nsb}(\ell_{22}) - \mathsf{nsb}(\ell_{17}) + \mathsf{nsb}_{e}(\ell_{22}) + \\ \mathsf{carry}(\ell_{23}, \ell_{17}, \ell_{22}), //\mathsf{Abb} \\ \mathsf{nsb}_{e}(\ell_{23}) \geq 0 - (-1) + \mathsf{nsb}(\ell_{17}) - \mathsf{nsb}(\ell_{22}) + \mathsf{nsb}_{e}(\ell_{17}) + \\ \end{array} 
g^{\ell_{1}} = 9.81^{\ell_{0}}; 1^{\ell_{3}} = 0.5^{\ell_{2}};
y_{1}^{\ell_{5}} = 0.785398^{\ell_{4}};
y_{2}^{\ell_{7}} = 0.785398^{\ell_{6}};
h^{\ell_{9}} = 0.1^{\ell_{8}}; t^{\ell_{11}} = 0.0^{\ell_{10}};
while (t^{\ell_{13}} < t^{\ell_{15}} t = 0.0^{\ell_{10}};
msb_{e}(\ell_{23}) \geq nsb(\ell_{19}) + nsb_{e}(\ell_{21}) - 2, //MULT
nsb_{e}(\ell_{22}) \geq nsb(\ell_{19}) + nsb_{e}(\ell_{19}) - 2, //MULT
nsb_{e}(\ell_{22}) \geq nsb(\ell_{21}) + nsb_{e}(\ell_{21}) - 2, //MULT
nsb_{e}(\ell_{22}) \geq nsb(\ell_{21}) + nsb_{e}(\ell_{22}) - nsb(\ell_{22}) - nsb(\ell_{22}
```

⁹A. Adjé, D. Ben Khalifa and M. Martel. "Fast and Efficient Bit-Level Precision Tuning". SAS'21

Running Example PI Constraints⁹

```
C_{PI} = 
        a^{\ell_1} = 9.81^{\ell_0}; |^{\ell_3} = 0.5^{\ell_2};
 2 v1^{\ell_5} = 0.785398^{\ell_4}:
 3 v2^{\ell}7 = 0.785398^{\ell}6;
        h^{\ell}9 = 0.1^{\ell}8 : t^{\ell}11 = 0.0^{\ell}10 :
         while (t^{\ell}13 < \ell^{15} 10.0^{\ell}14)^{\ell}59  {
  5
          v1new<sup>\ell</sup>24 = v1<sup>\ell</sup>17 +<sup>\ell</sup>23 v2<sup>\ell</sup>19 *<sup>\ell</sup>22 h<sup>\ell</sup>21:
 6
 7
           aux1^{\ell}28 = sin(y1^{\ell}26)^{\ell}27:
           aux^{\ell}40 = aux^{\ell}30 *^{\ell}39 h^{\ell}32
 8
          *^{\ell}38 \ \alpha^{\ell}34 \ /^{\ell}37 \ |^{\ell}36
 9
          v2new^{\ell}46 = v2^{\ell}42 - {}^{\ell}45 = aux2^{\ell}44
10
           t^{\ell}52 = t^{\ell}48 + t^{\ell}51 h^{\ell}50
11
          v1^{\ell}55 = v1new^{\ell}54:
12
13
          v2^{\ell}58 = v2new^{\ell}57; };
           require nsb(v2, 20)^{\ell}61:
14
```

POP Label File

```
nsb_{e}(\ell_{23}) \ge nsb_{e}(\ell_{17}), //ADD
                                      nsb_{e}(\ell_{23}) > nsb_{e}(\ell_{22}), //ADD
                                      nsb_{e}(\ell_{23}) \ge -1 - 0 + nsb(\ell_{22}) - nsb(\ell_{17}) + nsb_{e}(\ell_{22}) + 
                                      carry(\ell_{23}, \ell_{17}, \ell_{22}), //ADD
                                      nsb_{e}(\ell_{23}) \geq 0 - (-1) + nsb(\ell_{17}) - nsb(\ell_{22}) + nsb_{e}(\ell_{17}) + nsb_{e}
                                      carry(\ell_{23}, \ell_{17}, \ell_{22}), //ADD
                                      nsb_e(\ell_{23}) \ge nsb_e(\ell_{24}), //ADD
                                      nsb_{e}(\ell_{22}) \ge nsb(\ell_{19}) + nsb_{e}(\ell_{19}) + nsb_{e}(\ell_{21}) - 2, //MULT
                                      nsb_{e}(\ell_{22}) > nsb(\ell_{21}) + nsb_{e}(\ell_{21}) + nsb_{e}(\ell_{19}) - 2, //MuLT
carry(\ell_{23}, \ell_{17}, \ell_{22}) = \min \begin{pmatrix} \max (0 - 6 + nsb(\ell_{17}) - nsb(\ell_{22}) - nsb_e(\ell_{17}), 0), \\ \max (6 - 0 + nsb(\ell_{22}) - nsb(\ell_{17}) - nsb_e(\ell_{22}), 0), 1 \end{pmatrix}
                                                                                                                                                                                                                                          \max(0 - 6 + \operatorname{nsb}(\ell_{17}) - \operatorname{nsb}(\ell_{22}) -
                                         //CARRY
```

POP(ILP) with PI

- $C = C_{GIPK} \cup C_{PI}$: final set of constraints
- Activate optimized carry
- Feasible solution fastly computed

⁹A. Adjé, D. Ben Khalifa and M. Martel. "Fast and Efficient Bit-Level Precision Tuning". SAS'21

Dorra BEN KHALIFA

Fast and Efficient Bit-Level Precision Tuning

Running Example Results with PI

```
1 g |20| = 9.81 |20|; 1 |20| = 1.5 |20|;
2 y1|29| = 0.785398|29|;
3 v_2 |21| = 0.0 |21|:
4 h|21| = 0.1|21|; t|21| = 0.0|21|;
5 while (t < 1.0) {
  y1new|20| = y1|21| +|20| y2|21|*|22| h|21|;
6
7
     aux1|20| = sin(y1|29|)|20|;
     aux2|20| = aux1|19| *|20| h|18|*|19|g|17| /|18|1|17|;
8
9
  y2new|20| = y2|21| -|20| aux2|18|;
10 t|20| = t|21| + |20| h|17|;
11 y_1|_{20} = y_1 \text{new}|_{20};
12
     y_{2}|20| = y_{2}|20|;
13 }:
14 require_nsb(y2, 20);
```

File POP_output_PI

Tool	#Bits	#Var Solver	#Cstr Solver	Time (s)
POP(SMT)	960	314	431	13.1
POP(ILP)	861	52	69	3.5
POP(ILP)/ PI	843	97	204 (1 policy)	4.1

Running Example Results with PI

```
1 g |20| = 9.81 |20|; 1 |20| = 1.5 |20|;
2 y1|29| = 0.785398|29|;
3 v_2 |21| = 0.0 |21|:
4 h|21| = 0.1|21|; t|21| = 0.0|21|;
5 while (t < 1.0) {
  y1new|20| = y1|21| +|20| y2|21|*|22| h|21|;
6
7
     aux1|20| = sin(y1|29|)|20|;
     aux2 20 = aux1 19 * 20 h 18 * 19 g 17 / 18 1 17;
8
9
  y2new|20| = y2|21| -|20| aux2|18|;
10 t|20| = t|21| + |20| h|17|;
11 y_1|_{20} = y_1 \text{new}|_{20};
12
     y_{2}|20| = y_{2}|20|;
13 }:
14 require_nsb(y2, 20);
```

File POP_output_PI

Tool	#Bits	#Var Solver	#Cstr Solver	Time (s)
POP(SMT)	960	314	431	13.1
POP(ILP)	861	52	69	3.5
POP(ILP)/ PI	843	97	204 (1 policy)	4.1

Soundness of the constraint system of the ILP formulation¹⁰

¹⁰ Presented and proved in Chapter 5 Theorem 5.1

Dorra BEN KHALIFA

Fast and Efficient Bit-Level Precision Tuning

Preliminary Elements

Constraint Generation

3 Code Generation

Conclusion and Perspective

Methodology

Code with mixed-precision at bit-level

- Translation of bit-level precision to the upper number of bits corresponding to an IEEE-754 format
- Fixed-point formats → soon!

¹¹https://www.mpfr.org/

Methodology

Code with mixed-precision at bit-level

- Translation of bit-level precision to the upper number of bits corresponding to an IEEE-754 format
- Fixed-point formats → soon!

MPFR¹¹ code generation

- Generate MPFR program by assuming that the exact computations are performed in higher precision (300 bits)
- Generate MPFR program with precision returned by POP
- **Goal:** measure the difference between the two programs in fonction of the theoretical error given by the user

¹¹https://www.mpfr.org/

¹³https://www.gnu.org/software/gsl/

¹⁴https://fpbench.org/

¹²Intel Core i5-8350U CPU cadenced at 1.7GHz on a Linux machine with 8 GB RAM

• Which version of POP is more efficient?

¹³https://www.gnu.org/software/gsl/

¹⁴https://fpbench.org/

¹²Intel Core i5-8350U CPU cadenced at 1.7GHz on a Linux machine with 8 GB RAM

- Which version of POP is more efficient?
- How the returned precision are validated?

¹³https://www.gnu.org/software/gsl/

¹⁴https://fpbench.org/

¹²Intel Core i5-8350U CPU cadenced at 1.7GHz on a Linux machine with 8 GB RAM

- Which version of POP is more efficient?
- How the returned precision are validated?
- Which impact has the policy iteration (PI) method on POP(ILP)?

¹³https://www.gnu.org/software/gsl/

¹²Intel Core i5-8350U CPU cadenced at 1.7GHz on a Linux machine with 8 GB RAM

¹⁴https://fpbench.org/

- Which version of POP is more efficient?
- How the returned precision are validated?
- Which impact has the policy iteration (PI) method on POP(ILP)?
- POP(SMT) vs POP(ILP) vs Precimonious?

¹³https://www.gnu.org/software/gsl/

¹²Intel Core i5-8350U CPU cadenced at 1.7GHz on a Linux machine with 8 GB RAM

¹⁴https://fpbench.org/

- Which version of POP is more efficient?
- How the returned precision are validated?
- Which impact has the policy iteration (PI) method on POP(ILP)?
- POP(SMT) vs POP(ILP) vs Precimonious?

Target applications

• IoT, GNU scientific library ¹³ (arclength, simpson, . . .), physics (N-Body program \approx 400 LOCs), FPBench¹⁴ (Trapeze, Runge Kutta, PID, . . .), . . .

¹³https://www.gnu.org/software/gsl/

¹²Intel Core i5-8350U CPU cadenced at 1.7GHz on a Linux machine with 8 GB RAM

¹⁴https://fpbench.org/

Optimization parameters

• $100 \equiv$ all control points (CP) in **FP**64 precision (53 mantissa size)

example If we have 8 |CP| \implies 100 = 8 \times 53 = 424 bits

Optimization parameters

• $100 \equiv$ all control points (CP) in **FP**64 precision (53 mantissa size)

example If we have 8 |CP| \implies 100 = 8 \times 53 = 424 bits

Optimization in Bit-Level (BL)

$$\mathsf{BL} = \frac{\sum_{l \in CP} \mathsf{nsb}(\ell) \times 100}{|CP| \times 53}$$

Optimization parameters

- $100 \equiv$ all control points (CP) in **FP**64 precision (53 mantissa size)
- example If we have 8 |CP| \implies 100 = 8 \times 53 = 424 bits

Optimization in Bit-Level (BL)

$$\mathsf{BL} = \frac{\sum_{l \in CP} \mathsf{nsb}(\ell) \times 100}{|CP| \times 53}$$

From precision at bit-level to IEEE mode

Round to the upper IEEE-754 format

example $nsb = 8 \text{ bits} \longrightarrow 10 \text{ (FP16)}$ example $nsb = 20 \text{ bits} \longrightarrow 23 \text{ (FP32)}$ example $nsb = 25 \text{ bits} \longrightarrow 53 \text{ (FP64)}$

Preliminary Elements

Constraint Generatio

- **3** Code Generation
 - Evaluation POP(SMT)

Conclusion and Perspectives

Applications Internet of Things

• Application 1: Tilt angle measurements by a 3 axis accelerometer¹⁵

Application 2: Footstep counter program¹⁶

¹⁵D. Ben Khalifa and M.Martel. "Precision Tuning and Internet of Things".IINTEC'19.
¹⁶D.Ben Khalifa and M. Martel. "Precision Tuning of an Accelerometer-Based Pedometer Algorithm for IoT Devices".IoTalS'20

Pedometer Program Mixed-Precision in FP8, FP16, FP32 and FP64

• **Goal:** measure the percentage of program variables in FP8, FP16, FP32 and FP64 after POP(SMT) analysis

Performance of POP(SMT) Z3 Cost Functions ¹⁷

- Cost function with all control points
- Results in mixed precision for nsb = 12, 17, 23, 27, 30 and 38 bits

¹⁷D. Ben Khalifa and M. Martel. "An Evaluation of POP Performance for Tuning Numerical Programs in Floating-point Arithmetic".ICICT'21.

Performance of POP(SMT) Z3 Cost Functions ¹⁷

- More comparable cost function with only assigned variables \Longrightarrow same as in Precimonious
- Better optimization of the number of bits of programs

¹⁷D. Ben Khalifa and M. Martel. "An Evaluation of POP Performance for Tuning Numerical Programs in Floating-point Arithmetic".ICICT'21.

POP(SMT) Generate MPFR Code

 Goal: Curve of the difference between the exact results (300 bits) and the precision of POP(SMT) sticks to the theoretical curve by below

Preliminary Elements

Evaluation POP(ILP)

Precision Tuning Results for ILP and PI Methods¹⁸

Program	TH	BL	IEEE	ILP-time	BL	IEEE	PI-time	Н	S	D	LD
	10-4	73%	61%	0.2s	76%	62%	1.0s	53	69	0	0
	10^{-6}	62%	55%	0.2s	65%	55%	1.0s	2	102	0	0
accelerometer	10-8	49%	15%	0.2s	52%	18%	1.0s	2	33	69	0
	10-10	36%	1%	0.2s	39%	1%	1.0s	2	0	102	0
	10-12	25%	1%	0.2s	28%	1%	1.0s	2	0	102	0
	10-4	68%	46%	1.8s	69%	46%	10.7s	260	581	0	0
	10-6	57%	38%	1.8s	58%	45%	11.0s	258	580	3	0
lowPassFilter	10-8	44%	-7%	2.0s	45%	-7%	11.4s	258	2	581	0
	10-10	31%	-7%	1.7s	32%	-7%	10.9s	258	0	583	0
	10-12	20%	-7%	1.8s	21%	-7%	11.3s	258	0	583	0
	10-4	51%	41%	0.81s	51%	41%	0.82s	5	39	5	0
	10-6	49%	18%	0.78s	49%	18%	0.9s	0	44	5	0
2-Body	10-8	-7%	5%	0.8s	-7%	5%	0.78s	0	5	44	0
	10-10	-34%	-2%	0.8s	-34%	-2%	0.9	0	0	48	1
	10-12	-57%	-11%	0.9s	-57%	-11%	1.0s	0	0	44	0

Parameters

- TH: Error threshold
- IEEE Optimization in IEEE754
- H, S: FP16, FP32 precision

- BL: Optimization at Bit level
- ILP-time/PI-time: Analysis time
- D, LD: FP64, FP128 precision

¹⁸More examples given in Chapter 9 Table 9.1

Precision Tuning Results for ILP and PI Methods¹⁸

Program	TH	BL	IEEE	ILP-time	BL	IEEE	PI-time	Н	S	D	LD
	10-4	73%	61%	0.2s	76%	62%	1.0s	53	69	0	0
	10-6	62%	55%	0.2s	65%	55%	1.0s	2	102	0	0
accelerometer	10-8	49%	15%	0.2s	52%	18%	1.0s	2	33	69	0
	10-10	36%	1%	0.2s	39%	1%	1.0s	2	0	102	0
	10-12	25%	1%	0.2s	28%	1%	1.0s	2	0	102	0
	10-4	68%	46%	1.8s	69%	46%	10.7s	260	581	0	0
	10-6	57%	38%	1.8s	58%	45%	11.0s	258	580	3	0
lowPassFilter	10-8	44%	-7%	2.0s	45%	-7%	11.4s	258	2	581	0
	10^{-10}	31%	-7%	1.7s	32%	-7%	10.9s	258	0	583	0
	10-12	20%	-7%	1.8s	21%	-7%	11.3s	258	0	583	0
	10-4	51%	41%	0.81s	51%	41%	0.82s	5	39	5	0
2-Body	10-6	49%	18%	0.78s	49%	18%	0.9s	0	44	5	0
	10-8	-7%	5%	0.8s	-7%	5%	0.78s	0	5	44	0
	10-10	-34%	-2%	0.8s	-34%	-2%	0.9	0	0	48	1
	10-12	-57%	-11%	0.9s	-57%	-11%	1.0s	0	0	44	0

Main observations

- More important BL when coupling POP(ILP) with PI technique
- Ability of POP(ILP) to return new formats for any threshold

¹⁸More examples given in Chapter 9 Table 9.1

Program	Tool (LOC)	#Bits saved - Time in seconds							
		Threshold 10 ⁻⁴	Threshold 10 ⁻⁶	Threshold 10 ⁻⁸	Threshold 10 ⁻¹⁰				
arclength	POP(ILP) (28)	2464b. - 1.8s.	2144b. - 1.5s.	1792b 1.7s.	1728b 1.8s.				
	POP(SMT) (22)	1488b 4.7s.	1472b 3.04s.	864b 3.09s.	384b 2.9s.				
	Precimonious (9)	576b 146.4s.	576b 156.0s.	576b 145.8s.	576b 215.0s.				
simpson	POP(ILP) (14)	1344b 0.4s.	1152b 0.5s.	896b 0.4s.	896b 0.4s.				
	POP(SMT) (11)	896b 2.9s.	896b 1.9s.	704b 1.7s.	704b 1.8s.				
	Precimonious (10)	704b 208.1s.	704b 213.7s.	704b 207.5s.	704b 200.3s.				
rotation	POP(ILP) (25)	2624b 0.47s.	2464b 0.47s.	2048b 0.54s.	1600b 0.48s.				
	POP(SMT) (22)	1584b 1.85s.	2208b 1.7s.	1776b 1.6s.	1600b 1.7s.				
	Precimonious (27)	2400b 9.53s.	2592b 12.2s.	2464b 10.7s.	2464b 7.4s.				
accel.	POP(ILP) (18)	1776b 1.05s.	1728b 1.05s.	1248b 1.04s.	1152b 1.03s.				
	POP(SMT) (15)	1488b 2.6s.	1440b 2.6s.	1056b - 2.4s.	960b 2.4s.				
	Precimonious (0)	-	-	-	-				

Adjusting comparison criteria

- Consider only variables optimized by Precimonious
- Express all the error thresholds in base 10
- ... 19

¹⁹More criteria have been presented in Chapter 8 Section 8.3

²⁰ C. Rubio González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan, K. Sen, D. H. Bailey, C. Iancu, D. Hough. "Precimonious: tuning assistant for floating-point precision". SC'13.

Program	Tool (LOC)	#Bits saved - Time in seconds						
		Threshold 10 ⁻⁴	Threshold 10 ⁻⁶	Threshold 10 ⁻⁸	Threshold 10 ⁻¹⁰			
arclength	POP(ILP) (28)	2464b 1.8s.	2144b 1.5s.	1792b 1.7s.	1728b 1.8s.			
	POP(SMT) (22)	1488b 4.7s.	1472b 3.04s.	864b 3.09s.	384b 2.9s.			
	Precimonious (9)	576b 146.4s.	576b 156.0s.	576b 145.8s.	576b 215.0s.			
simpson	POP(ILP) (14)	1344b 0.4s.	1152b 0.5s.	896b 0.4s.	896b 0.4s.			
	POP(SMT) (11)	896b 2.9s.	896b 1.9s.	704b 1.7s.	704b 1.8s.			
	Precimonious (10)	704b 208.1s.	704b 213.7s.	704b 207.5s.	704b 200.3s.			
rotation	POP(ILP) (25)	2624b 0.47s.	2464b 0.47s.	2048b 0.54s.	1600b 0.48s.			
	POP(SMT) (22)	1584b 1.85s.	2208b 1.7s.	1776b 1.6s.	1600b 1.7s.			
	Precimonious (27)	2400b 9.53s.	2592b 12.2s.	2464b 10.7s.	2464b 7.4s.			
accel.	POP(ILP) (18)	1776b 1.05s.	1728b 1.05s.	1248b 1.04s.	1152b 1.03s.			
	POP(SMT) (15)	1488b 2.6s.	1440b 2.6s.	1056 - 2.4s.	960b 2.4s.			
	Precimonious (0)	-	-	-	-			

Main observations

- POP(ILP) saves more bits in fewer time
- Precimonious displays better results on the rotation example
- Precimonious fails to tune some benchmarks of POP

¹⁹C. Rubio González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan, K. Sen, D. H. Bailey, C. Iancu, D. Hough. "Precimonious: tuning assistant for floating-point precision". SC'13.

Preliminary Elements

Constraint Generation

3 C<u>ode Generatio</u>

4 Conclusion and Perspectives

• A new tool for precision tuning with three variants of method

- · Forward and backward error analysis checked by SMT solver
- Pure ILP with an over-approximation of the carry functions
- PI technique for more precise carry bit function
- Fast and efficient bit-level precision tuning
- There are still challenges to apply precision tuning at scale

Source code available at Ohttps://github.com/benkhelifadorra/POP-v2.0
Perspectives Tomorrow at 9AM...

First research direction

- Synthesis of fixed-point programs²⁰
- Satisfy the accuracy guarantee on the results
- POP computes at each point of this program the pair |m, s|
 - m: weight of the most significant bits
 - s: number of significants (nsb)
 - Shifts ?
- Synthesis of VHDL code for FPGA

²⁰Daniele Cattaneo et al. "Fixed point exploitation via compiler analyses and transformations: POSTER". CF'19

Perspectives Short/ Medium Terms

Scalability

- Reduce number of variables and constraints
- Explore commercial LP solvers for larger ILP problems

Extension

- Include functions in POP
- Combining POP with rewriting tools to improve accuracy²¹
- Precision tuning for DNN's and GPU applications

²¹N. Damouche, M. Martel. "Mixed Precision Tuning with Salsa". PECCS'18

Thank You...

Merci...

- Assalé Adjé, Dorra Ben Khalifa, and Matthieu Martel. Fast and Efficient Bit-Level Precision Tuning. In Static Analysis - 28th International Symposium, 2021.
- [2] Dorra Ben Khalifa and Matthieu Martel. An Evaluation of POP Performance for Tuning Numerical Programs in Floating-Point Arithmetic.

In IEEE International Conference on Information and Computer Technologies, 2021.

- [3] Dorra Ben Khalifa and Matthieu Martel.
 Precision Tuning and Internet of Things.
 In IEEE International Conference on Internet of Things, Embedded Systems and Communications, 2019.
- [4] Dorra Ben Khalifa and Matthieu Martel. Precision Tuning of an Accelerometer-Based Pedometer Algorithm for IoT Devices.

In IEEE International Conference on Internet of Things and Intelligence System, 2020.

- [5] Dorra Ben Khalifa and Matthieu Martel. A Study of the Floating-Point Tuning Behaviour on the N-Body Problem. In International Conference on Computational Science and Its Applications, 2021. Springer.
- [6] Dorra Ben Khalifa, Matthieu Martel, and Assalé Adjé. POP: A Tuning Assistant for Mixed-Precision Floating-Point Computations. In Formal Techniques for Safety-Critical Systems - 7th International Workshop, 2019.

A Study on the N-Body Problem by POP(ILP)²²

Simulation of the orbits of planets interacting with each other gravitationally

²²D. Ben Khalifa and M. Martel. "A study of the floating-point Tuning Behaviour on the N-body Problem." ICCSA'21

nsb	11	18	24	34	43	53
Simulation time: 10 years						
Jupiter	$5.542 \cdot 10^{-4}$	$1.650 \cdot 10^{-6}$	$1.577 \cdot 10^{-7}$	$4.998 \cdot 10^{-10}$	$5.077 \cdot 10^{-10}$	$5.076 \cdot 10^{-10}$
Saturn	$1.571 \cdot 10^{-3}$	$2.111 \cdot 10^{-5}$	$1.326 \cdot 10^{-7}$	$4.427 \cdot 10^{-10}$	$3.119 \cdot 10^{-10}$	$3.117 \cdot 10^{-10}$
Uranus	$2.952 \cdot 10^{-3}$	$2.364 \cdot 10^{-5}$	$1.140 \cdot 10^{-7}$	$3.072 \cdot 10^{-10}$	$7.212 \cdot 10^{-11}$	$7.236 \cdot 10^{-11}$
Neptune	$2.360 \cdot 10^{-3}$	$3.807\cdot 10^{-5}$	$2.206 \cdot 10^{-7}$	$5.578 \cdot 10^{-10}$	$1.751 \cdot 10^{-10}$	$1.757 \cdot 10^{-10}$
Runtime	2'59	2'52	2'57	2'56	3'10	2'59
POP Time	25"	22"	22"	24"	23"	24"

Satisfactory results which respect the user defined error POP(ILP) analysis time \approx 25 seconds

$dist(x, \hat{x})$ at each Instant of Simulation

Dorra BEN KHALIFA

Fast and Efficient Bit-Level Precision Tuning

• Truncation error: $\varepsilon_+ \leq 2^{ufp(z) - prec(+)}$ (prec(+) precision of the operator +)

• Truncation error: $\varepsilon_+ \leq 2^{ufp(z)-prec(+)}$ (prec(+) precision of the operator +)

Same for the multplication, subtraction and division

Technique generalizable to set of values

Dorra BEN KHALIFA

Fast and Efficient Bit-Level Precision Tuning

Constraints SMT Forward Addition Case

$$\varepsilon_z \leq 2^{\mathsf{ufp}(x) - \mathsf{nsb}_F(x) + 1} + 2^{\mathsf{ufp}(y) - \mathsf{nsb}_F(y) + 1} + 2^{\mathsf{ufp}(z) - \mathsf{prec}(+)}$$

Constraints SMT Forward Addition Case

$$\varepsilon_z \leq 2^{\mathsf{ufp}(x) - \mathsf{nsb}_F(x) + 1} + 2^{\mathsf{ufp}(y) - \mathsf{nsb}_F(y) + 1} + 2^{\mathsf{ufp}(z) - \mathsf{prec}(+)}$$

 $\mathsf{ufp}(\varepsilon_z) \le \mathsf{max}(\mathsf{ufp}(x) - \mathsf{nsb}_F(x), \mathsf{ufp}(y) - \mathsf{nsb}_F(y), \mathsf{ufp}(z) - \mathsf{prec}(+)) + carry(z, x, y)$

Constraints SMT Forward Addition Case

$$\varepsilon_z \le 2^{\mathsf{ufp}(x) - \mathsf{nsb}_F(x) + 1} + 2^{\mathsf{ufp}(y) - \mathsf{nsb}_F(y) + 1} + 2^{\mathsf{ufp}(z) - \mathsf{prec}(+)}$$

 $\mathsf{ufp}(\varepsilon_z) \le \mathsf{max}(\mathsf{ufp}(x) - \mathsf{nsb}_F(x), \mathsf{ufp}(y) - \mathsf{nsb}_F(y), \mathsf{ufp}(z) - \mathsf{prec}(+)) + carry(z, x, y)$

 $\begin{aligned} \text{nsb}_{F}(z) &= \text{ufp}(x+y) - \text{max}(\text{ufp}(x) - \text{nsb}_{F}(x), \text{ufp}(y) - \text{nsb}_{F}(y), \text{ufp}(z) - \text{prec}(+)) - carry \\ &\stackrel{\text{example}}{\longrightarrow} \overrightarrow{\oplus} (3.0|53|, 1.0|53|) = 4.0|54| \\ &\quad \text{nsb}_{B}(x) = \text{ufp}(z-y) - \text{ufp}(z) + \text{nsb}(z) \end{aligned}$

 $0 \leq \operatorname{nsb}_B(\ell) \leq \operatorname{nsb}(\ell) \leq \operatorname{nsb}_F(\ell), \ \forall \ell \in Lab$

Arithmetic Expressions Multiplication

• Forward multiplication $\overrightarrow{\otimes}$ between x and y in z $\overrightarrow{\otimes}(x, y) = z$ where $nsb_F(z) = ufp(x \times y) - ufp(y \cdot \varepsilon(x) + x \cdot \varepsilon(y) + \varepsilon(x) \cdot \varepsilon(x) + \varepsilon_{\times})$

example $\overrightarrow{\otimes}(4.0|53|, 1.0|53|) = 4.0|53| \Longrightarrow \operatorname{nsb}_F(z) = 53$

²³D. Ben Khalifa, M. Martel and A. Adjé. "POP: A Tuning Assistant for Mixed-Precision Floating-Point Computations". FTSCS'19

• Forward multiplication $\overrightarrow{\otimes}$ between x and y in z $\overrightarrow{\otimes}(x, y) = z$ where $nsb_F(z) = ufp(x \times y) - ufp(y \cdot \varepsilon(x) + x \cdot \varepsilon(y) + \varepsilon(x) \cdot \varepsilon(x) + \varepsilon_{\times})$

example $\vec{\otimes}$ (4.0|53|, 1.0|53|) = 4.0|53| \implies nsb_F(z) = 53

• Backward multiplication between x and y in z

$$\overleftarrow{\otimes}(z,y) = (z \div y) \text{ where } \operatorname{nsb}(x) = \operatorname{ufp}(z \div y) - \operatorname{ufp}\left(\frac{y \cdot \varepsilon(z) - z \cdot \varepsilon(y)}{y \cdot (y + \varepsilon(y))} - \varepsilon_{\times}\right)$$

example
$$\overleftarrow{\otimes}(4.0|23|, 1.0|53|) = 4.0|25| \implies \text{nsb}_B(z) = 53$$

²³D. Ben Khalifa, M. Martel and A. Adjé. "POP: A Tuning Assistant for Mixed-Precision Floating-Point Computations". FTSCS'19

• Forward multiplication $\overrightarrow{\otimes}$ between x and y in z $\overrightarrow{\otimes}(x, y) = z$ where $nsb_F(z) = ufp(x \times y) - ufp(y \cdot \varepsilon(x) + x \cdot \varepsilon(y) + \varepsilon(x) \cdot \varepsilon(x) + \varepsilon_{\times})$

example $\vec{\otimes}$ (4.0|53|, 1.0|53|) = 4.0|53| \implies nsb_F(z) = 53

• Backward multiplication between x and y in z

$$\overleftarrow{\otimes}(z,y) = (z \div y) \text{ where } \operatorname{nsb}(x) = \operatorname{ufp}(z \div y) - \operatorname{ufp}\left(\frac{y \cdot \varepsilon(z) - z \cdot \varepsilon(y)}{y \cdot (y + \varepsilon(y))} - \varepsilon_{\times}\right)$$

(ample)
$$\overleftarrow{\otimes}(4.0|23|, 1.0|53|) = 4.0|25| \Longrightarrow \text{nsb}_B(z) = 53$$

Generalization

e

- Same for the subtraction and division
- Technique generalizable to set of values²³

²³D. Ben Khalifa, M. Martel and A. Adjé. "POP: A Tuning Assistant for Mixed-Precision Floating-Point Computations". FTSCS'19

POP (both versions)

- Constraint generation by static analysis
- Optimized formats given by solvers
- Mixed-precision: FP8, FP16, FP32, FP64, FPxx
- Programmer accuracy requirement
- Supports arrays, conditions, loops, no function yet

Precimonious

- Dynamic analysis by delta-debugging search
- Type configurations rely on inputs tested **only**
- FP32 and FP64
- Given programmer error threshold (10⁻⁴, 10⁻⁶, 10⁻⁸, ...)
- C program input

²⁴C. Rubio González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan, K. Sen, D. H. Bailey, C. Iancu, D. Hough. "Precimonious: tuning assistant for floating-point precision". SC'13.