

University of Perpignan Via Domitia LAMPS Laboratory, France

Managing Performance vs. Accuracy Trade-offs with an Improved Bit-Level Precision Tuning

 $\rm CMMSE~2021$

Assalé Adjé <u>Dorra Ben Khalifa</u> Matthieu Martel dorra.ben-khalifa@univ-perp.fr

July 25, 2021

- ► Higher-precision data formats, *e.g. binary*64 and binary128
 - + More accurate/robust
 - Higher execution time, increased memory / energy consumption

- Challenge: Best trade-offs between accuracy and performance
- Precision Tuning: lowering a computational kernel's precision up to a user accuracy requirement
- Idea: develop automated techniques to assist in precision tuning

Precision Tuning: A Survey

 Try and fail strategies: change more or less randomly the data types and run the program

[S. Cherubin and G. Agosta. Tools for Reduced Precision Computation: A Survey. In ACM Computing Surveys'20]

Precision Tuning: A Survey

Dynamic tools

[D. Ben Khalifa, M. Martel, and A. Adjé. POP : A Tuning Assistant for Mixed-Precision Floating-Point Computations (FTSCS'19)]

[A. Adjé, D. Ben Khalifa, and M. Martel. Fast and Efficient Bit-Level Precision Tuning (SAS'21)]

Preliminary Notations and Definitions ufp, nsb, ulp and computation errors

3

The unit in the first place of a real number x

$$ufp(x) = \begin{cases} \min\{i \in \mathbb{Z} : 2^{i+1} > |x|\} = \lfloor \log_2(|x|) \rfloor & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

ufp, nsb, ulp and computation errors

The unit in the first place of a real number x

$$\mathsf{ufp}(x) = \begin{cases} \min\{i \in \mathbb{Z} : 2^{i+1} > |x|\} = \lfloor \log_2(|x|) \rfloor & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

nsb(x): number of significant bits of x

- \hat{x} : approximation of x in finite precision
- $\varepsilon(x) = |x \hat{x}|$: the absolute error

$$\varepsilon(x) \leq 2^{\operatorname{ufp}(x) - \operatorname{nsb}(x) + 1}$$

[Parker, D.S.: Monte carlo arithmetic: exploiting randomness in floating-point arithmetic. Tech. Rep. CSD-970002, University of California'97]

ufp, nsb, ulp and computation errors

The unit in the last place of x: ulp(x) = ufp(x) − nsb(x) + 1
 ufp_e(x) = ufp(x) − nsb(x)

ufp, nsb, ulp and computation errors

- The unit in the last place of x: ulp(x) = ufp(x) nsb(x) + 1
- $ufp_e(x) = ufp(x) nsb(x)$
- nsb_e: number of significant bits of the computation error on x
- nsb_e(x) is computed as follows:
 - For a constant c, $nsb_e(c) = 0$ (constants assumed exact)
 - $\blacktriangleright x^{\ell} = c_1^{\ell_1} \odot c_2^{\ell_2} \text{ with } \mathsf{ufp}_{\mathsf{e}}(c_1) \ge \mathsf{ufp}_{\mathsf{e}}(c_2), \odot \in \{+, -, \times, \div\}$

$$\mathsf{nsb}_{\mathsf{e}}(x) = \mathsf{ufp}_{\mathsf{e}}(c_1) - (\mathsf{ufp}_{\mathsf{e}}(c_2) - \mathsf{nsb}_{\mathsf{e}}(c_2) + 1)$$

ufp, nsb, ulp and computation errors

• The unit in the last place of x: ulp(x) = ufp(x) - nsb(x) + 1

•
$$ufp_e(x) = ufp(x) - nsb(x)$$

- nsb_e: number of significant bits of the computation error on x
- ▶ nsb_e(*x*) is computed as follows:
 - ► For a constant c, nsb_e(c) = 0 (constants assumed exact)

►
$$x^{\ell} = c_1^{\ell_1} \odot c_2^{\ell_2}$$
 with $ufp_e(c_1) \ge ufp_e(c_2), \odot \in \{+, -, \times, \div\}$

$$\mathsf{nsb}_{\mathsf{e}}(x) = \mathsf{ufp}_{\mathsf{e}}(c_1) - (\mathsf{ufp}_{\mathsf{e}}(c_2) - \mathsf{nsb}_{\mathsf{e}}(c_2) + 1)$$

ufp, nsb, ulp and computation errors

• The unit in the last place of x: ulp(x) = ufp(x) - nsb(x) + 1

•
$$ufp_e(x) = ufp(x) - nsb(x)$$

- nsb_e: number of significant bits of the computation error on x
- nsb_e(x) is computed as follows:
 - For a constant c, $nsb_e(c) = 0$ (constants assumed exact)
 - $\blacktriangleright x^{\ell} = c_1^{\ell_1} \odot c_2^{\ell_2} \text{ with } \mathsf{ufp}_e(c_1) \ge \mathsf{ufp}_e(c_2), \odot \in \{+, -, \times, \div\}$

$$\mathsf{nsb}_{\mathsf{e}}(x) = \mathsf{ufp}_{\mathsf{e}}(c_1) - (\mathsf{ufp}_{\mathsf{e}}(c_2) - \mathsf{nsb}_{\mathsf{e}}(c_2) + 1)$$

►
$$ulp_e(x) = ufp_e(x) - nsb_e(x) + 1$$

POP: Precision OPtimizer

Step 1: Parsing and Range Determination Phase

5

Parsing and Range Determination Phase

1 g = 9.81; l = 0.5;
2 y1 = 0.785398;
3 y2 = 0.785398;
4 h = 0.1; t = 0.0;
5 while (t <10.0) {
6 y1new = y1 + y2 * h ;
7 aux1 =
$$sin(y1)$$
;
8 aux2 = $aux1 * h * g / l;$
9 y2new = y2 - $aux2;$
10 t = t + h;
11 y1 = y1new;
12 y2 = y2new;
13 };
14 require_nsb(y2, 20);

POP Source File

Parsing and Range Determination Phase

 $g^{\ell_1} = 9.81^{\ell_0}$; $I^{\ell_3} = 0.5^{\ell_2}$; $y1^{\ell_5} = 0.785398^{\ell_4}$; $y2^{\ell_7} = 0.785398^{\ell_6}$; $h^{\ell_9} = 0.1^{\ell_8}$; $t^{\ell_{11}} = 0.0^{\ell_{10}}$; 5 while $(t^{\ell_{13}} <^{\ell_{15}} 10.0^{\ell_{14}})^{\ell_{59}}$ { $y1new^{\ell_{24}} = y1^{\ell_{17}} +^{\ell_{23}} y2^{\ell_{19}} *^{\ell_{22}} h^{\ell_{21}}$; $aux1^{\ell_{28}} = sin(y1^{\ell_{26}})^{\ell_{27}}$; $aux2^{\ell_{40}} = aux1^{\ell_{30}} *^{\ell_{39}} h^{\ell_{32}}$ $*^{\ell_{38}} g^{\ell_{34}} /^{\ell_{37}} I^{\ell_{36}}$; $y2new^{\ell_{46}} = y2^{\ell_{42}} -^{\ell_{45}} aux2^{\ell_{44}}$; $t^{\ell_{52}} = t^{\ell_{48}} +^{\ell_{51}} h^{\ell_{50}}$; $y1^{\ell_{55}} = y1new^{\ell_{54}}$; $y2^{\ell_{58}} = y2new^{\ell_{57}}$; }; 14 require nsb(y2.20)^{\ell_{61}};

POP Source File

POP Label File

Constraints Generation for Bit-Level Tuning Step 2: ILP Formulation

7

OPTIMIZER REGISION

- Static technique relying on semantical modelling of the propagation of numerical errors
- Reasoning on ufp (known at constraint generation time) and nsb (unknown) of the program values
- Generate an ILP from the program source code
- Optimally solved by a classical LP solver in polynomial time
- Pessimistic carry bit function: $\xi = 1$

Constraints Generation for Bit-Level Tuning Pendulum Program (ILP)


```
 \begin{array}{l} 1 \hspace{0.1cm} g^{\ell 1} \hspace{0.1cm} = \hspace{0.1cm} 9.81^{\ell 0} ; \hspace{0.1cm} 1^{\ell 3} \hspace{0.1cm} = \hspace{0.1cm} 0.5^{\ell 2} ; \\ 2 \hspace{0.1cm} y1^{\ell 5} \hspace{0.1cm} = \hspace{0.1cm} 0.785398^{\ell 4} ; \\ 3 \hspace{0.1cm} y2^{\ell 7} \hspace{0.1cm} = \hspace{0.1cm} 0.785398^{\ell 6} ; \\ 4 \hspace{0.1cm} \hbar^{\theta} \hspace{0.1cm} = \hspace{0.1cm} 0.1^{\ell 8} ; \hspace{0.1cm} t^{\ell 11} \hspace{0.1cm} = \hspace{0.1cm} 0.0^{\ell 10} ; \\ 5 \hspace{0.1cm} \text{while} \hspace{0.1cm} (t^{\ell 13} \hspace{0.1cm} \epsilon^{\ell 15} \hspace{0.1cm} 10.0^{\ell 14})^{\ell 59} \hspace{0.1cm} \{ \\ \text{6} \hspace{0.1cm} \text{y1ew}^{\ell 24} \hspace{0.1cm} = \hspace{0.1cm} y1^{\ell 26} )^{\ell 27} ; \\ 8 \hspace{0.1cm} ax2^{\ell 40} \hspace{0.1cm} = \hspace{0.1cm} ax1^{\ell 30} \hspace{0.1cm} \epsilon^{\ell 39} \hspace{0.1cm} h^{\ell 32} \\ 9 \hspace{0.1cm} \epsilon^{\delta 38} \hspace{0.1cm} g^{\delta 4} \hspace{0.1cm} J^{\ell 37} \hspace{0.1cm} t^{\ell 36} ; \\ 10 \hspace{0.1cm} y2new^{\ell 46} \hspace{0.1cm} = \hspace{0.1cm} y2^{\ell 42} \hspace{0.1cm} - \hspace{0.1cm} \ell^{\delta 4} ; \\ 11 \hspace{0.1cm} t^{\ell 52} \hspace{0.1cm} = \hspace{0.1cm} yx1e^{\ell 54} ; \\ 12 \hspace{0.1cm} y1e^{\ell 55} \hspace{0.1cm} = \hspace{0.1cm} yxnev^{\ell 57} ; \\ 3 \hspace{0.1cm} y2e^{\ell 58} \hspace{0.1cm} y2new^{\ell 57} ; \\ \}; \\ 14 \hspace{0.1cm} require\_nsb \hspace{0.1cm} (y2,20)^{\ell 61} ; \end{array}
```

POP Label File

Constraints Generation for Bit-Level Tuning Pendulum Program (ILP)

```
C_{1} = 9.81^{\ell_{0}}; 1^{\ell_{3}} = 0.5^{\ell_{2}};
2 y1^{\ell_{5}} = 0.785398^{\ell_{4}};
3 y2^{\ell_{7}} = 0.785398^{\ell_{6}};
5 while (1^{\ell_{13}} < ^{\ell_{15}} = 0.0^{\ell_{10}};
6 y1new^{\ell_{24}} = y1^{\ell_{17}} + ^{\ell_{23}} y2^{\ell_{19}} * ^{\ell_{22}} h^{\ell_{21}};
8 aux^{\ell_{40}} = aux1^{\ell_{30}} * ^{\ell_{39}} h^{\ell_{32}};
9 * ^{\ell_{38}} g^{\ell_{34}} / ^{\ell_{37}} 1^{\ell_{36}};
10 y2new^{\ell_{46}} = y2^{\ell_{42}} - ^{\ell_{45}} aux2^{\ell_{44}};
11 t^{\ell_{52}} = t^{\ell_{48}} * ^{\ell_{51}} h^{\ell_{50}};
12 y1^{\ell_{55}} = y1new^{\ell_{57}};
13 y2^{\ell_{56}} = y2new^{\ell_{57}};
15 t^{\ell_{51}} = t^{\ell_{48}} + t^{\ell_{51}} t^{\ell_{50}};
14 t^{\ell_{50}} = t^{\ell_{48}} + t^{\ell_{51}} t^{\ell_{50}};
14 t^{\ell_{50}} = t^{\ell_{48}} - t^{\ell_{57}};
14 t^{\ell_{50}} = t^{\ell_{48}} + t^{\ell_{51}} t^{\ell_{50}};
15 t^{\ell_{50}} = t^{\ell_{48}} + t^{\ell_{51}} t^{\ell_{50}};
16 t^{\ell_{50}} = t^{\ell_{48}} + t^{\ell_{51}} t^{\ell_{50}};
17 t^{\ell_{55}} = t^{\ell_{48}} + t^{\ell_{51}} t^{\ell_{50}};
18 t^{\ell_{50}} = t^{\ell_{50}} + t^{\ell_{50}} = t^{\ell_{50}} = t^{\ell_{50}} + t^{\ell_{50}} = t^{\ell_{50}} + t^{\ell_{50}} = t^{\ell_{50}} = t^{\ell_{50}} + t^{\ell_{50}} = t
```

POP Label File

$$\begin{cases} \operatorname{nsb}(\ell_{17}) \ge \operatorname{nsb}(\ell_{23}) + (-1) + \xi(\ell_{23})(\ell_{17}, \ell_{22}) - (-1) // \text{ADD} \\ \operatorname{nsb}(\ell_{22}) \ge \operatorname{nsb}(\ell_{23}) + 0 + \xi(\ell_{23})(\ell_{17}, \ell_{22}) - (1) // \text{ADD} \\ \operatorname{nsb}(\ell_{19}) \ge \operatorname{nsb}(\ell_{22}) + \xi(\ell_{22})(\ell_{19}, \ell_{21}) - 1 // \text{MULT} \\ \operatorname{nsb}(\ell_{21}) \ge \operatorname{nsb}(\ell_{22}) + \xi(\ell_{22})(\ell_{19}, \ell_{21}) - 1 // \text{MULT} \\ \operatorname{nsb}(\ell_{23}) \ge \operatorname{nsb}(\ell_{24}) // \text{ASSIGN} \\ \xi(\ell_{23})(\ell_{17}, \ell_{22}) \ge 1, \xi(\ell_{22})(\ell_{19}, \ell_{21}) \ge 1 // \text{CARRY BIT} \end{cases}$$

Constraints Generation for Bit-Level Tuning Pendulum Program (ILP)

```
1 g^{\ell_1} = 9.81^{\ell_0}; 1^{\ell_3} = 0.5^{\ell_2};

2 y1^{\ell_5} = 0.785398^{\ell_4};

3 y2^{\ell_7} = 0.785398^{\ell_6};

4 h^{\ell_9} = 0.1^{\ell_8}; t^{\ell_{11}} = 0.0^{\ell_{10}};

5 while (t^{\ell_{13}} < t^{\ell_5} 1 = 0.0^{\ell_{14}})^{\ell_{59}} {

6 y1new^{\ell_{24}} = y1^{\ell_{17}} + t^{\ell_{23}} y2^{\ell_{19}} + t^{\ell_{22}}h^{\ell_{21}};

8 aux2^{\ell_{40}} = aux1^{\ell_{30}} * t^{\ell_{39}} h^{\ell_{32}}

9 *^{\ell_{38}} g^{\ell_{34}} / t^{\ell_{37}} 1^{\ell_{36}};

10 y2new^{\ell_{46}} = y2^{\ell_{42}} - t^{\ell_{45}} aux2^{\ell_{44}};

11 t^{\ell_{52}} = t^{\ell_{48}} + t^{\ell_{51}} h^{\ell_{50}};

12 y1^{\ell_{55}} = y1new^{\ell_{57}};

13 y2^{\ell_{56}} = y2new^{\ell_{57}};

14 require_nsb(y2.20)^{\ell_{61}};
```

POP Label File

```
C_{1} = \begin{cases} \operatorname{nsb}(\ell_{17}) \ge \operatorname{nsb}(\ell_{23}) + (-1) + \xi(\ell_{23})(\ell_{17}, \ell_{22}) - (-1) / / \text{Add} \\ \operatorname{nsb}(\ell_{22}) \ge \operatorname{nsb}(\ell_{23}) + 0 + \xi(\ell_{23})(\ell_{17}, \ell_{22}) - (1) / / \text{Add} \\ \operatorname{nsb}(\ell_{19}) \ge \operatorname{nsb}(\ell_{22}) + \xi(\ell_{22})(\ell_{19}, \ell_{21}) - 1 / / \text{Mult} \\ \operatorname{nsb}(\ell_{21}) \ge \operatorname{nsb}(\ell_{22}) + \xi(\ell_{22})(\ell_{19}, \ell_{21}) - 1 / / \text{Mult} \\ \operatorname{nsb}(\ell_{23}) \ge \operatorname{nsb}(\ell_{24}) / / \text{Assign} \\ \xi(\ell_{23})(\ell_{17}, \ell_{22}) \ge 1, \xi(\ell_{22})(\ell_{19}, \ell_{21}) \ge 1 / / \text{Carry Bit} \end{cases}
```

- Constraints generated for all the statements of POP programs: if, while, for, array, sqrt, sin, etc.
- Linear number of constraints / variables in the size of the analyzed program

[Nielson, F. and Nielson, H. R., and Hankin, C. Principles of Program Analysis. Springer-Verlag, Berlin, Heidelberg'99]

Tuned Pendulum Program (ILP)

```
||q|||20|| = ||9.81||20||; |||20|| = ||1.5||20||;
2 y1 |29| = 0.785398 |29|;
3 v2 |22| = 0.0 |22|:
4 h|22| = 0.1|22|; t|21| = 0.0|21|;
5 while (t < 1.0) {
     v1new|20| = v1|21| + |20| v2|22| + |22| h|22|;
6
     aux1|20| = sin(y1|29|)|20|;
7
     aux2|20| = aux1|20| * |20| h|20| * |20| g|20|/
8
           20 1 20 ;
9
     y2new|20| = y2|21| - |20| aux2|18|;
10 t|20| = t|21| + |20| h|17|;
     y1|20| = y1new|20|;
11
     v_{2}|20| = v_{2}|20|:
12
13 }:
14 require nsb(v2,20);
```

10

File pop_output

2385 bits (originally) VS 861 bits at bit level after POP analysis

Tuned Pendulum Program (ILP)

```
||q|||20|| = ||9.81||20||; |||20|| = ||1.5||20||;
2 y1 |29| = 0.785398 |29|;
3 v2 |22| = 0.0 |22|:
4 h|22| = 0.1|22|; t|21| = 0.0|21|;
5 while (t < 1.0) {
     y1new|20| = y1|21| + |20| y2|22| + |22| h|22|;
6
     aux1|20| = sin(y1|29|)|20|;
7
     aux2|20| = aux1|20| * |20| h|20| * |20| g|20|/
8
           20 1 20 ;
9
     y2new|20| = y2|21| - |20| aux2|18|;
     t|20| = t|21| + |20| h|17|;
10
     y1|20| = y1new|20|;
11
     v_{2}|20| = v_{2}|20|:
12
13 }:
14 require nsb(v2,20);
```

10

File pop_output

2385 bits (originally) VS 861 bits at bit level after POP analysis How to be less pessimistic on carries propagation?

12

Step 3: PI for Optimized Carry Bit Propagation

Step 3: PI for Optimized Carry Bit Propagation

 Very costly over-approximation of *ξ* in ILP formulation
 12

Step 3: PI for Optimized Carry Bit Propagation

 Very costly over-approximation of *ξ* in ILP formulation

 x^ℓ = *c*₁^{ℓ₁} + *c*₂^{ℓ₂}

$$\xi(\ell, \ell_1, \ell_2) = \begin{cases} 0 & \text{ulp}_e(\ell_1) > \text{ufp}_e(\ell_2) \\ 0 & \text{ulp}_e(\ell_2) > \text{ufp}_e(\ell_1) \\ 1 & \text{otherwise} \end{cases}$$

12

Step 3: PI for Optimized Carry Bit Propagation

 $\xi(\ell)(\ell_1, \ell_2) = \min \left(\begin{array}{c} \max \left(\mathsf{ufp}(\ell_2) - \mathsf{ufp}(\ell_1) + \mathsf{nsb}(\ell_1) - \mathsf{nsb}(\ell_2) - \mathsf{nsb}_{e}(\ell_2), 0 \right), \\ \max \left(\mathsf{ufp}(\ell_1) - \mathsf{ufp}(\ell_2) + \mathsf{nsb}(\ell_2) - \mathsf{nsb}(\ell_1) - \mathsf{nsb}_{e}(\ell_1), 0 \right), 1 \end{array} \right)$

12

Need to estimate the integer quantity nsbe

Step 3: PI for Optimized Carry Bit Propagation

$$\xi(\ell, \ell_1, \ell_2) = \begin{cases} 0 & \text{ulp}_e(\ell_1) > \text{ufp}_e(\ell_2) \\ 0 & \text{ulp}_e(\ell_2) > \text{ufp}_e(\ell_1) \\ 1 & \text{otherwise} \end{cases}$$

$$\xi(\ell)(\ell_1,\ell_2) = \min \left(\begin{array}{c} \max\left(\mathsf{ufp}(\ell_2) - \mathsf{ufp}(\ell_1) + \mathsf{nsb}(\ell_1) - \mathsf{nsb}(\ell_2) - \mathsf{nsb}_{\mathsf{e}}(\ell_2), 0\right), \\ \max\left(\mathsf{ufp}(\ell_1) - \mathsf{ufp}(\ell_2) + \mathsf{nsb}(\ell_2) - \mathsf{nsb}(\ell_1) - \mathsf{nsb}_{\mathsf{e}}(\ell_1), 0\right), 1 \end{array} \right)$$

Need to estimate the integer quantity nsb_e

No longer ILP formulation!

Policy Iteration to Refine Carry Bit Propagation

$$\xi(\ell)(\ell_1,\ell_2) = \min\left(\begin{array}{c} \max\left(ufp(\ell_2) - ufp(\ell_1) + nsb(\ell_1) - nsb(\ell_2) - nsb_e(\ell_2), 0\right), \\ \max\left(ufp(\ell_1) - ufp(\ell_2) + nsb(\ell_2) - nsb(\ell_1) - nsb_e(\ell_1), 0\right), 1 \end{array}\right)$$

$$\xi(\ell)(\ell_1,\ell_2) = \min\left(\begin{array}{c} \max(\pi_{11},\pi_{12}), \\ \max(\pi_{21},\pi_{22}),\pi_{31} \end{array}\right)$$

► Principle:

- Choose a policy π_0 by breaking the min max equations
 - e.g. $\pi_0 = (\pi_{11}, \pi_{22}), \ldots$
- Associate f^{π0} for π0
 - e.g. $f^{\pi_0} = (\pi_{11}, \pi_{22})$
- Solve corresponding ILP problem
- If no fixed point is reached, POP iterates until a solution is found
 - e.g. $\pi_1 = (\pi_{12}, \pi_{21}), \ldots$

 \longrightarrow A policy cannot be selected twice in the running of the algorithm \longrightarrow The number of iterations is bounded by the number of policies

Constraints Generation for Bit-Level Tuning Pendulum Program (PI)

$$y1new^{\ell_{24}} = y1^{\ell_{17}} + ^{\ell_{23}} y2^{\ell_{19}} * ^{\ell_{22}} h^{\ell_{21}}$$

$$C_{2} = \begin{cases} \begin{array}{l} \operatorname{nsb}_{e}(\ell_{23}) \geq \operatorname{nsb}_{e}(\ell_{17}), \\ \operatorname{nsb}_{e}(\ell_{23}) \geq \operatorname{nsb}_{e}(\ell_{22}), \\ \operatorname{nsb}(\ell_{23}) \geq -1 - 0 + \operatorname{nsb}(\ell_{22}) - \operatorname{nsb}(\ell_{17}) + \operatorname{nsb}_{e}(\ell_{22}) + \xi(\ell_{23}, \ell_{17}, \ell_{22}), \\ \operatorname{nsb}_{e}(\ell_{23}) \geq 0 - (-1) + \operatorname{nsb}(\ell_{17}) - \operatorname{nsb}(\ell_{22}) + \operatorname{nsb}_{e}(\ell_{17}) + \xi(\ell_{23}, \ell_{17}, \ell_{22}), \\ \operatorname{nsb}_{e}(\ell_{23}) \geq \operatorname{nsb}(\ell_{24}), \\ \operatorname{nsb}_{e}(\ell_{22}) \geq \operatorname{nsb}(\ell_{19}) + \operatorname{nsb}_{e}(\ell_{19}) - 2, \\ \operatorname{nsb}_{e}(\ell_{22}) \geq \operatorname{nsb}(\ell_{21}) + \operatorname{nsb}_{e}(\ell_{21}) - \operatorname{nsb}(\ell_{17}) - \operatorname{nsb}(\ell_{22}) - \operatorname{nsb}_{e}(\ell_{17}, 0), \\ \xi(\ell_{23})(\ell_{17}, \ell_{22}) = \min \begin{pmatrix} \max \left(0 - 6 + \operatorname{nsb}(\ell_{17}) - \operatorname{nsb}(\ell_{22}) - \operatorname{nsb}_{e}(\ell_{17}), 0 \right), \\ \max \left(6 - 0 + \operatorname{nsb}(\ell_{22}) - \operatorname{nsb}(\ell_{17}) - \operatorname{nsb}(\ell_{22}), 0 \right), 1 \end{pmatrix} \end{cases}$$

- $C = C_1 \cup C_2$: global set of constraints
- Activate optimized ξ instead of its over-approximation in pure ILP
- Optimal solution found in few seconds

Tuned Pendulum Program (PI)

```
|1 | q | 20 | = 9.81 | 20 |; ||20 | = 1.5 | 20 |;
2 v1|29| = 0.785398|29|;
3 \ v^{2} |21| = 0.0 |21|:
4 h|21| = 0.1|21|; t|21| = 0.0|21|;
5 while (t < 1.0) {
  y1new|20| = y1|21| + |20| y2|21| + |22| h|21|;
6
7 aux1|20| = sin(y1|29|)|20|;
     aux^{2}|20| = aux^{1}|19| * |20| h^{1}|8| * |19|q|17| / |18|
8
           1|17|;
   y2new|20| = y2|21| - |20| aux2|18|;
9
10 t|20| = t|21| + |20| h|17|;
     y1|20| = y1new|20|;
11
     v2|20| = v2new|20|:
12
13 }:
14 require_nsb(y2,20);
```

15

File pop_output

861 bits (ILP) VS 843 bits with PI method

POP(ILP)[1, 2], POP(SMT)[3, 4, 5, 6] and Precimonio

Program	Tool (LOC)	#Bits saved - Time in seconds			
		Threshold 10^{-4}	Threshold 10 ⁻⁶	Threshold 10 ⁻⁸	Threshold 10^{-10}
arclength	POP(ILP) (28)	2464b 1.8s.	2144b 1.5s.	1792b 1.7s.	1728b 1.8s.
	POP(SMT) (22)	1488b 4.7s.	1472b 3.04s.	864b 3.09s.	384b 2.9s.
	Precimonious (9)	576b 146.4s.	576b 156.0s.	576b 145.8s.	576b 215.0s.
simpson	POP(ILP) (14)	1344b 0.4s.	1152b 0.5s.	896b 0.4s.	896b 0.4s.
	POP(SMT) (11)	896b 2.9s.	896b 1.9s.	704b 1.7s.	704b 1.8s.
	Precimonious (10)	704b 208.1s.	704b 213.7s.	704b 207.5s.	704b 200.3s.
rotation	POP(ILP) (25)	2624b 0.47s.	2464b 0.47s.	2048b 0.54s.	1600b 0.48s.
	POP(SMT) (22)	1584b 1.85s.	2208b 1.7s.	1776b 1.6s.	1600b 1.7s.
	Precimonious (27)	2400b 9.53s.	2592b 12.2s.	2464b 10.7s.	2464b 7.4s.
accel.	POP(ILP) (18)	1776b 1.05s.	1728b 1.05s.	1248b 1.04s.	1152b 1.03s.
	POP(SMT) (15)	1488b 2.6s.	1440b 2.6s.	1056 - 2.4s.	960b 2.4s.
	Precimonious (0)	-	-	-	-

16

Adjusting comparison criteria

- Consider only the variables optimized by Precimonious to estimate the quality of the optimization.
- Express all the error thresholds in base 10

[C. Rubio González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan, K. Sen, D. H. Bailey, C. Iancu, D. Hough, Precimonious: tuning assistant for floating-point precision, SC'13.]

Takeaways/Future Directions

- New approach for precision tuning with two variants of methods
 - Pure ILP with an over-approximation of the carry functions
 - PI technique for more precise carry bit function
- Limitation is the size of the problem accepted by the solver
- Reduce number of variables by assigning the same precision to the whole piece of code
- Technique adaptable for DNN's
- Code synthesis for the fixed-point arithmetic

Main References

- Assalé Adjé, Dorra Ben Khalifa, and Matthieu Martel. Fast and efficient bit-level precision tuning. Submitted.
- [2] Dorra Ben Khalifa and Matthieu Martel.
 A study of the floating-point tuning behaviour on the n-body problem. Submitted.
- [3] Dorra Ben Khalifa and Matthieu Martel. Precision tuning and internet of things. In International Conference on Internet of Things, Embedded Systems and Communications, IINTEC 2019, pages 80–85. IEEE, 2019.
- [4] Dorra Ben Khalifa and Matthieu Martel.
 Precision tuning of an accelerometer-based pedometer algorithm for iot devices.
 In International Conference on Internet of Things and Intelligence System, IOTAIS 2020, pages 113–119. IEEE, 2020.
- [5] Dorra Ben Khalifa and Matthieu Martel.

An evaluation of pop performance for tuning numerical programs in floating-point arithmetic. In International Conference on Information and Computer Technologies, ICICT 2021. IEEE, 2021.

[6] Dorra Ben Khalifa, Matthieu Martel, and Assalé Adjé. POP: A tuning assistant for mixed-precision floating-point computations. In Formal Techniques for Safety-Critical Systems - 7th International Workshop, FTSCS 2019, volume 1165 of Communications in Computer and Information Science, pages 77–94. Springer, 2019.

UNIVERSITÉ PERPIGNAN VIA DOMITIA

Thank you! Questions?